Search

Search Results (325299 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-54284 1 Linux 1 Linux Kernel 2025-12-31 N/A
In the Linux kernel, the following vulnerability has been resolved: media: av7110: prevent underflow in write_ts_to_decoder() The buf[4] value comes from the user via ts_play(). It is a value in the u8 range. The final length we pass to av7110_ipack_instant_repack() is "len - (buf[4] + 1) - 4" so add a check to ensure that the length is not negative. It's not clear that passing a negative len value does anything bad necessarily, but it's not best practice. With the new bounds checking the "if (!len)" condition is no longer possible or required so remove that.
CVE-2023-54285 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iomap: Fix possible overflow condition in iomap_write_delalloc_scan folio_next_index() returns an unsigned long value which left shifted by PAGE_SHIFT could possibly cause an overflow on 32-bit system. Instead use folio_pos(folio) + folio_size(folio), which does this correctly.
CVE-2023-54286 1 Linux 1 Linux Kernel 2025-12-31 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: dvm: Fix memcpy: detected field-spanning write backtrace A received TKIP key may be up to 32 bytes because it may contain MIC rx/tx keys too. These are not used by iwl and copying these over overflows the iwl_keyinfo.key field. Add a check to not copy more data to iwl_keyinfo.key then will fit. This fixes backtraces like this one: memcpy: detected field-spanning write (size 32) of single field "sta_cmd.key.key" at drivers/net/wireless/intel/iwlwifi/dvm/sta.c:1103 (size 16) WARNING: CPU: 1 PID: 946 at drivers/net/wireless/intel/iwlwifi/dvm/sta.c:1103 iwlagn_send_sta_key+0x375/0x390 [iwldvm] <snip> Hardware name: Dell Inc. Latitude E6430/0H3MT5, BIOS A21 05/08/2017 RIP: 0010:iwlagn_send_sta_key+0x375/0x390 [iwldvm] <snip> Call Trace: <TASK> iwl_set_dynamic_key+0x1f0/0x220 [iwldvm] iwlagn_mac_set_key+0x1e4/0x280 [iwldvm] drv_set_key+0xa4/0x1b0 [mac80211] ieee80211_key_enable_hw_accel+0xa8/0x2d0 [mac80211] ieee80211_key_replace+0x22d/0x8e0 [mac80211] <snip>
CVE-2023-54287 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tty: serial: imx: disable Ageing Timer interrupt request irq There maybe pending USR interrupt before requesting irq, however uart_add_one_port has not executed, so there will be kernel panic: [ 0.795668] Unable to handle kernel NULL pointer dereference at virtual addre ss 0000000000000080 [ 0.802701] Mem abort info: [ 0.805367] ESR = 0x0000000096000004 [ 0.808950] EC = 0x25: DABT (current EL), IL = 32 bits [ 0.814033] SET = 0, FnV = 0 [ 0.816950] EA = 0, S1PTW = 0 [ 0.819950] FSC = 0x04: level 0 translation fault [ 0.824617] Data abort info: [ 0.827367] ISV = 0, ISS = 0x00000004 [ 0.831033] CM = 0, WnR = 0 [ 0.833866] [0000000000000080] user address but active_mm is swapper [ 0.839951] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP [ 0.845953] Modules linked in: [ 0.848869] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.1.1+g56321e101aca #1 [ 0.855617] Hardware name: Freescale i.MX8MP EVK (DT) [ 0.860452] pstate: 000000c5 (nzcv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.867117] pc : __imx_uart_rxint.constprop.0+0x11c/0x2c0 [ 0.872283] lr : imx_uart_int+0xf8/0x1ec The issue only happends in the inmate linux when Jailhouse hypervisor enabled. The test procedure is: while true; do jailhouse enable imx8mp.cell jailhouse cell linux xxxx sleep 10 jailhouse cell destroy 1 jailhouse disable sleep 5 done And during the upper test, press keys to the 2nd linux console. When `jailhouse cell destroy 1`, the 2nd linux has no chance to put the uart to a quiese state, so USR1/2 may has pending interrupts. Then when `jailhosue cell linux xx` to start 2nd linux again, the issue trigger. In order to disable irqs before requesting them, both UCR1 and UCR2 irqs should be disabled, so here fix that, disable the Ageing Timer interrupt in UCR2 as UCR1 does.
CVE-2023-54292 1 Linux 1 Linux Kernel 2025-12-31 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/irdma: Fix data race on CQP request done KCSAN detects a data race on cqp_request->request_done memory location which is accessed locklessly in irdma_handle_cqp_op while being updated in irdma_cqp_ce_handler. Annotate lockless intent with READ_ONCE/WRITE_ONCE to avoid any compiler optimizations like load fusing and/or KCSAN warning. [222808.417128] BUG: KCSAN: data-race in irdma_cqp_ce_handler [irdma] / irdma_wait_event [irdma] [222808.417532] write to 0xffff8e44107019dc of 1 bytes by task 29658 on cpu 5: [222808.417610] irdma_cqp_ce_handler+0x21e/0x270 [irdma] [222808.417725] cqp_compl_worker+0x1b/0x20 [irdma] [222808.417827] process_one_work+0x4d1/0xa40 [222808.417835] worker_thread+0x319/0x700 [222808.417842] kthread+0x180/0x1b0 [222808.417852] ret_from_fork+0x22/0x30 [222808.417918] read to 0xffff8e44107019dc of 1 bytes by task 29688 on cpu 1: [222808.417995] irdma_wait_event+0x1e2/0x2c0 [irdma] [222808.418099] irdma_handle_cqp_op+0xae/0x170 [irdma] [222808.418202] irdma_cqp_cq_destroy_cmd+0x70/0x90 [irdma] [222808.418308] irdma_puda_dele_rsrc+0x46d/0x4d0 [irdma] [222808.418411] irdma_rt_deinit_hw+0x179/0x1d0 [irdma] [222808.418514] irdma_ib_dealloc_device+0x11/0x40 [irdma] [222808.418618] ib_dealloc_device+0x2a/0x120 [ib_core] [222808.418823] __ib_unregister_device+0xde/0x100 [ib_core] [222808.418981] ib_unregister_device+0x22/0x40 [ib_core] [222808.419142] irdma_ib_unregister_device+0x70/0x90 [irdma] [222808.419248] i40iw_close+0x6f/0xc0 [irdma] [222808.419352] i40e_client_device_unregister+0x14a/0x180 [i40e] [222808.419450] i40iw_remove+0x21/0x30 [irdma] [222808.419554] auxiliary_bus_remove+0x31/0x50 [222808.419563] device_remove+0x69/0xb0 [222808.419572] device_release_driver_internal+0x293/0x360 [222808.419582] driver_detach+0x7c/0xf0 [222808.419592] bus_remove_driver+0x8c/0x150 [222808.419600] driver_unregister+0x45/0x70 [222808.419610] auxiliary_driver_unregister+0x16/0x30 [222808.419618] irdma_exit_module+0x18/0x1e [irdma] [222808.419733] __do_sys_delete_module.constprop.0+0x1e2/0x310 [222808.419745] __x64_sys_delete_module+0x1b/0x30 [222808.419755] do_syscall_64+0x39/0x90 [222808.419763] entry_SYSCALL_64_after_hwframe+0x63/0xcd [222808.419829] value changed: 0x01 -> 0x03
CVE-2023-54293 1 Linux 1 Linux Kernel 2025-12-31 N/A
In the Linux kernel, the following vulnerability has been resolved: bcache: fixup btree_cache_wait list damage We get a kernel crash about "list_add corruption. next->prev should be prev (ffff9c801bc01210), but was ffff9c77b688237c. (next=ffffae586d8afe68)." crash> struct list_head 0xffff9c801bc01210 struct list_head { next = 0xffffae586d8afe68, prev = 0xffffae586d8afe68 } crash> struct list_head 0xffff9c77b688237c struct list_head { next = 0x0, prev = 0x0 } crash> struct list_head 0xffffae586d8afe68 struct list_head struct: invalid kernel virtual address: ffffae586d8afe68 type: "gdb_readmem_callback" Cannot access memory at address 0xffffae586d8afe68 [230469.019492] Call Trace: [230469.032041] prepare_to_wait+0x8a/0xb0 [230469.044363] ? bch_btree_keys_free+0x6c/0xc0 [escache] [230469.056533] mca_cannibalize_lock+0x72/0x90 [escache] [230469.068788] mca_alloc+0x2ae/0x450 [escache] [230469.080790] bch_btree_node_get+0x136/0x2d0 [escache] [230469.092681] bch_btree_check_thread+0x1e1/0x260 [escache] [230469.104382] ? finish_wait+0x80/0x80 [230469.115884] ? bch_btree_check_recurse+0x1a0/0x1a0 [escache] [230469.127259] kthread+0x112/0x130 [230469.138448] ? kthread_flush_work_fn+0x10/0x10 [230469.149477] ret_from_fork+0x35/0x40 bch_btree_check_thread() and bch_dirty_init_thread() may call mca_cannibalize() to cannibalize other cached btree nodes. Only one thread can do it at a time, so the op of other threads will be added to the btree_cache_wait list. We must call finish_wait() to remove op from btree_cache_wait before free it's memory address. Otherwise, the list will be damaged. Also should call bch_cannibalize_unlock() to release the btree_cache_alloc_lock and wake_up other waiters.
CVE-2023-54295 1 Linux 1 Linux Kernel 2025-12-31 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mtd: spi-nor: Fix shift-out-of-bounds in spi_nor_set_erase_type spi_nor_set_erase_type() was used either to set or to mask out an erase type. When we used it to mask out an erase type a shift-out-of-bounds was hit: UBSAN: shift-out-of-bounds in drivers/mtd/spi-nor/core.c:2237:24 shift exponent 4294967295 is too large for 32-bit type 'int' The setting of the size_{shift, mask} and of the opcode are unnecessary when the erase size is zero, as throughout the code just the erase size is considered to determine whether an erase type is supported or not. Setting the opcode to 0xFF was wrong too as nobody guarantees that 0xFF is an unused opcode. Thus when masking out an erase type, just set the erase size to zero. This will fix the shift-out-of-bounds. [ta: refine changes, new commit message, fix compilation error]
CVE-2023-54296 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: SVM: Get source vCPUs from source VM for SEV-ES intrahost migration Fix a goof where KVM tries to grab source vCPUs from the destination VM when doing intrahost migration. Grabbing the wrong vCPU not only hoses the guest, it also crashes the host due to the VMSA pointer being left NULL. BUG: unable to handle page fault for address: ffffe38687000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] SMP NOPTI CPU: 39 PID: 17143 Comm: sev_migrate_tes Tainted: GO 6.5.0-smp--fff2e47e6c3b-next #151 Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 34.28.0 07/10/2023 RIP: 0010:__free_pages+0x15/0xd0 RSP: 0018:ffff923fcf6e3c78 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffffe38687000000 RCX: 0000000000000100 RDX: 0000000000000100 RSI: 0000000000000000 RDI: ffffe38687000000 RBP: ffff923fcf6e3c88 R08: ffff923fcafb0000 R09: 0000000000000000 R10: 0000000000000000 R11: ffffffff83619b90 R12: ffff923fa9540000 R13: 0000000000080007 R14: ffff923f6d35d000 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff929d0d7c0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffe38687000000 CR3: 0000005224c34005 CR4: 0000000000770ee0 PKRU: 55555554 Call Trace: <TASK> sev_free_vcpu+0xcb/0x110 [kvm_amd] svm_vcpu_free+0x75/0xf0 [kvm_amd] kvm_arch_vcpu_destroy+0x36/0x140 [kvm] kvm_destroy_vcpus+0x67/0x100 [kvm] kvm_arch_destroy_vm+0x161/0x1d0 [kvm] kvm_put_kvm+0x276/0x560 [kvm] kvm_vm_release+0x25/0x30 [kvm] __fput+0x106/0x280 ____fput+0x12/0x20 task_work_run+0x86/0xb0 do_exit+0x2e3/0x9c0 do_group_exit+0xb1/0xc0 __x64_sys_exit_group+0x1b/0x20 do_syscall_64+0x41/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd </TASK> CR2: ffffe38687000000
CVE-2023-54299 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: typec: bus: verify partner exists in typec_altmode_attention Some usb hubs will negotiate DisplayPort Alt mode with the device but will then negotiate a data role swap after entering the alt mode. The data role swap causes the device to unregister all alt modes, however the usb hub will still send Attention messages even after failing to reregister the Alt Mode. type_altmode_attention currently does not verify whether or not a device's altmode partner exists, which results in a NULL pointer error when dereferencing the typec_altmode and typec_altmode_ops belonging to the altmode partner. Verify the presence of a device's altmode partner before sending the Attention message to the Alt Mode driver.
CVE-2023-54309 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tpm: tpm_vtpm_proxy: fix a race condition in /dev/vtpmx creation /dev/vtpmx is made visible before 'workqueue' is initialized, which can lead to a memory corruption in the worst case scenario. Address this by initializing 'workqueue' as the very first step of the driver initialization.
CVE-2023-54300 1 Linux 1 Linux Kernel 2025-12-31 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: avoid referencing uninit memory in ath9k_wmi_ctrl_rx For the reasons also described in commit b383e8abed41 ("wifi: ath9k: avoid uninit memory read in ath9k_htc_rx_msg()"), ath9k_htc_rx_msg() should validate pkt_len before accessing the SKB. For example, the obtained SKB may have been badly constructed with pkt_len = 8. In this case, the SKB can only contain a valid htc_frame_hdr but after being processed in ath9k_htc_rx_msg() and passed to ath9k_wmi_ctrl_rx() endpoint RX handler, it is expected to have a WMI command header which should be located inside its data payload. Implement sanity checking inside ath9k_wmi_ctrl_rx(). Otherwise, uninit memory can be referenced. Tested on Qualcomm Atheros Communications AR9271 802.11n . Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
CVE-2023-54301 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: serial: 8250_bcm7271: fix leak in `brcmuart_probe` Smatch reports: drivers/tty/serial/8250/8250_bcm7271.c:1120 brcmuart_probe() warn: 'baud_mux_clk' from clk_prepare_enable() not released on lines: 1032. The issue is fixed by using a managed clock.
CVE-2023-54302 1 Linux 1 Linux Kernel 2025-12-31 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/irdma: Fix data race on CQP completion stats CQP completion statistics is read lockesly in irdma_wait_event and irdma_check_cqp_progress while it can be updated in the completion thread irdma_sc_ccq_get_cqe_info on another CPU as KCSAN reports. Make completion statistics an atomic variable to reflect coherent updates to it. This will also avoid load/store tearing logic bug potentially possible by compiler optimizations. [77346.170861] BUG: KCSAN: data-race in irdma_handle_cqp_op [irdma] / irdma_sc_ccq_get_cqe_info [irdma] [77346.171383] write to 0xffff8a3250b108e0 of 8 bytes by task 9544 on cpu 4: [77346.171483] irdma_sc_ccq_get_cqe_info+0x27a/0x370 [irdma] [77346.171658] irdma_cqp_ce_handler+0x164/0x270 [irdma] [77346.171835] cqp_compl_worker+0x1b/0x20 [irdma] [77346.172009] process_one_work+0x4d1/0xa40 [77346.172024] worker_thread+0x319/0x700 [77346.172037] kthread+0x180/0x1b0 [77346.172054] ret_from_fork+0x22/0x30 [77346.172136] read to 0xffff8a3250b108e0 of 8 bytes by task 9838 on cpu 2: [77346.172234] irdma_handle_cqp_op+0xf4/0x4b0 [irdma] [77346.172413] irdma_cqp_aeq_cmd+0x75/0xa0 [irdma] [77346.172592] irdma_create_aeq+0x390/0x45a [irdma] [77346.172769] irdma_rt_init_hw.cold+0x212/0x85d [irdma] [77346.172944] irdma_probe+0x54f/0x620 [irdma] [77346.173122] auxiliary_bus_probe+0x66/0xa0 [77346.173137] really_probe+0x140/0x540 [77346.173154] __driver_probe_device+0xc7/0x220 [77346.173173] driver_probe_device+0x5f/0x140 [77346.173190] __driver_attach+0xf0/0x2c0 [77346.173208] bus_for_each_dev+0xa8/0xf0 [77346.173225] driver_attach+0x29/0x30 [77346.173240] bus_add_driver+0x29c/0x2f0 [77346.173255] driver_register+0x10f/0x1a0 [77346.173272] __auxiliary_driver_register+0xbc/0x140 [77346.173287] irdma_init_module+0x55/0x1000 [irdma] [77346.173460] do_one_initcall+0x7d/0x410 [77346.173475] do_init_module+0x81/0x2c0 [77346.173491] load_module+0x1232/0x12c0 [77346.173506] __do_sys_finit_module+0x101/0x180 [77346.173522] __x64_sys_finit_module+0x3c/0x50 [77346.173538] do_syscall_64+0x39/0x90 [77346.173553] entry_SYSCALL_64_after_hwframe+0x63/0xcd [77346.173634] value changed: 0x0000000000000094 -> 0x0000000000000095
CVE-2023-54303 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Disable preemption in bpf_perf_event_output The nesting protection in bpf_perf_event_output relies on disabled preemption, which is guaranteed for kprobes and tracepoints. However bpf_perf_event_output can be also called from uprobes context through bpf_prog_run_array_sleepable function which disables migration, but keeps preemption enabled. This can cause task to be preempted by another one inside the nesting protection and lead eventually to two tasks using same perf_sample_data buffer and cause crashes like: kernel tried to execute NX-protected page - exploit attempt? (uid: 0) BUG: unable to handle page fault for address: ffffffff82be3eea ... Call Trace: ? __die+0x1f/0x70 ? page_fault_oops+0x176/0x4d0 ? exc_page_fault+0x132/0x230 ? asm_exc_page_fault+0x22/0x30 ? perf_output_sample+0x12b/0x910 ? perf_event_output+0xd0/0x1d0 ? bpf_perf_event_output+0x162/0x1d0 ? bpf_prog_c6271286d9a4c938_krava1+0x76/0x87 ? __uprobe_perf_func+0x12b/0x540 ? uprobe_dispatcher+0x2c4/0x430 ? uprobe_notify_resume+0x2da/0xce0 ? atomic_notifier_call_chain+0x7b/0x110 ? exit_to_user_mode_prepare+0x13e/0x290 ? irqentry_exit_to_user_mode+0x5/0x30 ? asm_exc_int3+0x35/0x40 Fixing this by disabling preemption in bpf_perf_event_output.
CVE-2023-54311 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: fix deadlock when converting an inline directory in nojournal mode In no journal mode, ext4_finish_convert_inline_dir() can self-deadlock by calling ext4_handle_dirty_dirblock() when it already has taken the directory lock. There is a similar self-deadlock in ext4_incvert_inline_data_nolock() for data files which we'll fix at the same time. A simple reproducer demonstrating the problem: mke2fs -Fq -t ext2 -O inline_data -b 4k /dev/vdc 64 mount -t ext4 -o dirsync /dev/vdc /vdc cd /vdc mkdir file0 cd file0 touch file0 touch file1 attr -s BurnSpaceInEA -V abcde . touch supercalifragilisticexpialidocious
CVE-2023-54304 1 Linux 1 Linux Kernel 2025-12-31 N/A
In the Linux kernel, the following vulnerability has been resolved: firmware: meson_sm: fix to avoid potential NULL pointer dereference of_match_device() may fail and returns a NULL pointer. Fix this by checking the return value of of_match_device.
CVE-2023-54305 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: refuse to create ea block when umounted The ea block expansion need to access s_root while it is already set as NULL when umount is triggered. Refuse this request to avoid panic.
CVE-2023-54306 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: tls: avoid hanging tasks on the tx_lock syzbot sent a hung task report and Eric explains that adversarial receiver may keep RWIN at 0 for a long time, so we are not guaranteed to make forward progress. Thread which took tx_lock and went to sleep may not release tx_lock for hours. Use interruptible sleep where possible and reschedule the work if it can't take the lock. Testing: existing selftest passes
CVE-2023-54313 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ovl: fix null pointer dereference in ovl_get_acl_rcu() Following process: P1 P2 path_openat link_path_walk may_lookup inode_permission(rcu) ovl_permission acl_permission_check check_acl get_cached_acl_rcu ovl_get_inode_acl realinode = ovl_inode_real(ovl_inode) drop_cache __dentry_kill(ovl_dentry) iput(ovl_inode) ovl_destroy_inode(ovl_inode) dput(oi->__upperdentry) dentry_kill(upperdentry) dentry_unlink_inode upperdentry->d_inode = NULL ovl_inode_upper upperdentry = ovl_i_dentry_upper(ovl_inode) d_inode(upperdentry) // returns NULL IS_POSIXACL(realinode) // NULL pointer dereference , will trigger an null pointer dereference at realinode: [ 205.472797] BUG: kernel NULL pointer dereference, address: 0000000000000028 [ 205.476701] CPU: 2 PID: 2713 Comm: ls Not tainted 6.3.0-12064-g2edfa098e750-dirty #1216 [ 205.478754] RIP: 0010:do_ovl_get_acl+0x5d/0x300 [ 205.489584] Call Trace: [ 205.489812] <TASK> [ 205.490014] ovl_get_inode_acl+0x26/0x30 [ 205.490466] get_cached_acl_rcu+0x61/0xa0 [ 205.490908] generic_permission+0x1bf/0x4e0 [ 205.491447] ovl_permission+0x79/0x1b0 [ 205.491917] inode_permission+0x15e/0x2c0 [ 205.492425] link_path_walk+0x115/0x550 [ 205.493311] path_lookupat.isra.0+0xb2/0x200 [ 205.493803] filename_lookup+0xda/0x240 [ 205.495747] vfs_fstatat+0x7b/0xb0 Fetch a reproducer in [Link]. Use the helper ovl_i_path_realinode() to get realinode and then do non-nullptr checking.
CVE-2023-54314 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: af9005: Fix null-ptr-deref in af9005_i2c_xfer In af9005_i2c_xfer, msg is controlled by user. When msg[i].buf is null and msg[i].len is zero, former checks on msg[i].buf would be passed. Malicious data finally reach af9005_i2c_xfer. If accessing msg[i].buf[0] without sanity check, null ptr deref would happen. We add check on msg[i].len to prevent crash. Similar commit: commit 0ed554fd769a ("media: dvb-usb: az6027: fix null-ptr-deref in az6027_i2c_xfer()")