CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
net: sched: fix ets qdisc OOB Indexing
Haowei Yan <g1042620637@gmail.com> found that ets_class_from_arg() can
index an Out-Of-Bound class in ets_class_from_arg() when passed clid of
0. The overflow may cause local privilege escalation.
[ 18.852298] ------------[ cut here ]------------
[ 18.853271] UBSAN: array-index-out-of-bounds in net/sched/sch_ets.c:93:20
[ 18.853743] index 18446744073709551615 is out of range for type 'ets_class [16]'
[ 18.854254] CPU: 0 UID: 0 PID: 1275 Comm: poc Not tainted 6.12.6-dirty #17
[ 18.854821] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
[ 18.856532] Call Trace:
[ 18.857441] <TASK>
[ 18.858227] dump_stack_lvl+0xc2/0xf0
[ 18.859607] dump_stack+0x10/0x20
[ 18.860908] __ubsan_handle_out_of_bounds+0xa7/0xf0
[ 18.864022] ets_class_change+0x3d6/0x3f0
[ 18.864322] tc_ctl_tclass+0x251/0x910
[ 18.864587] ? lock_acquire+0x5e/0x140
[ 18.865113] ? __mutex_lock+0x9c/0xe70
[ 18.866009] ? __mutex_lock+0xa34/0xe70
[ 18.866401] rtnetlink_rcv_msg+0x170/0x6f0
[ 18.866806] ? __lock_acquire+0x578/0xc10
[ 18.867184] ? __pfx_rtnetlink_rcv_msg+0x10/0x10
[ 18.867503] netlink_rcv_skb+0x59/0x110
[ 18.867776] rtnetlink_rcv+0x15/0x30
[ 18.868159] netlink_unicast+0x1c3/0x2b0
[ 18.868440] netlink_sendmsg+0x239/0x4b0
[ 18.868721] ____sys_sendmsg+0x3e2/0x410
[ 18.869012] ___sys_sendmsg+0x88/0xe0
[ 18.869276] ? rseq_ip_fixup+0x198/0x260
[ 18.869563] ? rseq_update_cpu_node_id+0x10a/0x190
[ 18.869900] ? trace_hardirqs_off+0x5a/0xd0
[ 18.870196] ? syscall_exit_to_user_mode+0xcc/0x220
[ 18.870547] ? do_syscall_64+0x93/0x150
[ 18.870821] ? __memcg_slab_free_hook+0x69/0x290
[ 18.871157] __sys_sendmsg+0x69/0xd0
[ 18.871416] __x64_sys_sendmsg+0x1d/0x30
[ 18.871699] x64_sys_call+0x9e2/0x2670
[ 18.871979] do_syscall_64+0x87/0x150
[ 18.873280] ? do_syscall_64+0x93/0x150
[ 18.874742] ? lock_release+0x7b/0x160
[ 18.876157] ? do_user_addr_fault+0x5ce/0x8f0
[ 18.877833] ? irqentry_exit_to_user_mode+0xc2/0x210
[ 18.879608] ? irqentry_exit+0x77/0xb0
[ 18.879808] ? clear_bhb_loop+0x15/0x70
[ 18.880023] ? clear_bhb_loop+0x15/0x70
[ 18.880223] ? clear_bhb_loop+0x15/0x70
[ 18.880426] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 18.880683] RIP: 0033:0x44a957
[ 18.880851] Code: ff ff e8 fc 00 00 00 66 2e 0f 1f 84 00 00 00 00 00 66 90 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 2e 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 89 54 24 1c 48 8974 24 10
[ 18.881766] RSP: 002b:00007ffcdd00fad8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
[ 18.882149] RAX: ffffffffffffffda RBX: 00007ffcdd010db8 RCX: 000000000044a957
[ 18.882507] RDX: 0000000000000000 RSI: 00007ffcdd00fb70 RDI: 0000000000000003
[ 18.885037] RBP: 00007ffcdd010bc0 R08: 000000000703c770 R09: 000000000703c7c0
[ 18.887203] R10: 0000000000000080 R11: 0000000000000246 R12: 0000000000000001
[ 18.888026] R13: 00007ffcdd010da8 R14: 00000000004ca7d0 R15: 0000000000000001
[ 18.888395] </TASK>
[ 18.888610] ---[ end trace ]--- |
In the Linux kernel, the following vulnerability has been resolved:
pktgen: Avoid out-of-bounds access in get_imix_entries
Passing a sufficient amount of imix entries leads to invalid access to the
pkt_dev->imix_entries array because of the incorrect boundary check.
UBSAN: array-index-out-of-bounds in net/core/pktgen.c:874:24
index 20 is out of range for type 'imix_pkt [20]'
CPU: 2 PID: 1210 Comm: bash Not tainted 6.10.0-rc1 #121
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
Call Trace:
<TASK>
dump_stack_lvl lib/dump_stack.c:117
__ubsan_handle_out_of_bounds lib/ubsan.c:429
get_imix_entries net/core/pktgen.c:874
pktgen_if_write net/core/pktgen.c:1063
pde_write fs/proc/inode.c:334
proc_reg_write fs/proc/inode.c:346
vfs_write fs/read_write.c:593
ksys_write fs/read_write.c:644
do_syscall_64 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe arch/x86/entry/entry_64.S:130
Found by Linux Verification Center (linuxtesting.org) with SVACE.
[ fp: allow to fill the array completely; minor changelog cleanup ] |
In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fixed hclge_fetch_pf_reg accesses bar space out of bounds issue
The TQP BAR space is divided into two segments. TQPs 0-1023 and TQPs
1024-1279 are in different BAR space addresses. However,
hclge_fetch_pf_reg does not distinguish the tqp space information when
reading the tqp space information. When the number of TQPs is greater
than 1024, access bar space overwriting occurs.
The problem of different segments has been considered during the
initialization of tqp.io_base. Therefore, tqp.io_base is directly used
when the queue is read in hclge_fetch_pf_reg.
The error message:
Unable to handle kernel paging request at virtual address ffff800037200000
pc : hclge_fetch_pf_reg+0x138/0x250 [hclge]
lr : hclge_get_regs+0x84/0x1d0 [hclge]
Call trace:
hclge_fetch_pf_reg+0x138/0x250 [hclge]
hclge_get_regs+0x84/0x1d0 [hclge]
hns3_get_regs+0x2c/0x50 [hns3]
ethtool_get_regs+0xf4/0x270
dev_ethtool+0x674/0x8a0
dev_ioctl+0x270/0x36c
sock_do_ioctl+0x110/0x2a0
sock_ioctl+0x2ac/0x530
__arm64_sys_ioctl+0xa8/0x100
invoke_syscall+0x4c/0x124
el0_svc_common.constprop.0+0x140/0x15c
do_el0_svc+0x30/0xd0
el0_svc+0x1c/0x2c
el0_sync_handler+0xb0/0xb4
el0_sync+0x168/0x180 |
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix racy issue from session lookup and expire
Increment the session reference count within the lock for lookup to avoid
racy issue with session expire. |
In the Linux kernel, the following vulnerability has been resolved:
rtc: pcf85063: fix potential OOB write in PCF85063 NVMEM read
The nvmem interface supports variable buffer sizes, while the regmap
interface operates with fixed-size storage. If an nvmem client uses a
buffer size less than 4 bytes, regmap_read will write out of bounds
as it expects the buffer to point at an unsigned int.
Fix this by using an intermediary unsigned int to hold the value. |
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_tcm: Don't free command immediately
Don't prematurely free the command. Wait for the status completion of
the sense status. It can be freed then. Otherwise we will double-free
the command. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix read pointer after free in ath12k_mac_assign_vif_to_vdev()
In ath12k_mac_assign_vif_to_vdev(), if arvif is created on a different
radio, it gets deleted from that radio through a call to
ath12k_mac_unassign_link_vif(). This action frees the arvif pointer.
Subsequently, there is a check involving arvif, which will result in a
read-after-free scenario.
Fix this by moving this check after arvif is again assigned via call to
ath12k_mac_assign_link_vif().
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.3.1-00173-QCAHKSWPL_SILICONZ-1 |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7925: fix off by one in mt7925_load_clc()
This comparison should be >= instead of > to prevent an out of bounds
read and write. |
In the Linux kernel, the following vulnerability has been resolved:
mailbox: th1520: Fix memory corruption due to incorrect array size
The functions th1520_mbox_suspend_noirq and th1520_mbox_resume_noirq are
intended to save and restore the interrupt mask registers in the MBOX
ICU0. However, the array used to store these registers was incorrectly
sized, leading to memory corruption when accessing all four registers.
This commit corrects the array size to accommodate all four interrupt
mask registers, preventing memory corruption during suspend and resume
operations. |
In the Linux kernel, the following vulnerability has been resolved:
xfrm: state: fix out-of-bounds read during lookup
lookup and resize can run in parallel.
The xfrm_state_hash_generation seqlock ensures a retry, but the hash
functions can observe a hmask value that is too large for the new hlist
array.
rehash does:
rcu_assign_pointer(net->xfrm.state_bydst, ndst) [..]
net->xfrm.state_hmask = nhashmask;
While state lookup does:
h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family);
hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) {
This is only safe in case the update to state_bydst is larger than
net->xfrm.xfrm_state_hmask (or if the lookup function gets
serialized via state spinlock again).
Fix this by prefetching state_hmask and the associated pointers.
The xfrm_state_hash_generation seqlock retry will ensure that the pointer
and the hmask will be consistent.
The existing helpers, like xfrm_dst_hash(), are now unsafe for RCU side,
add lockdep assertions to document that they are only safe for insert
side.
xfrm_state_lookup_byaddr() uses the spinlock rather than RCU.
AFAICS this is an oversight from back when state lookup was converted to
RCU, this lock should be replaced with RCU in a future patch. |
In the Linux kernel, the following vulnerability has been resolved:
hrtimers: Handle CPU state correctly on hotplug
Consider a scenario where a CPU transitions from CPUHP_ONLINE to halfway
through a CPU hotunplug down to CPUHP_HRTIMERS_PREPARE, and then back to
CPUHP_ONLINE:
Since hrtimers_prepare_cpu() does not run, cpu_base.hres_active remains set
to 1 throughout. However, during a CPU unplug operation, the tick and the
clockevents are shut down at CPUHP_AP_TICK_DYING. On return to the online
state, for instance CFS incorrectly assumes that the hrtick is already
active, and the chance of the clockevent device to transition to oneshot
mode is also lost forever for the CPU, unless it goes back to a lower state
than CPUHP_HRTIMERS_PREPARE once.
This round-trip reveals another issue; cpu_base.online is not set to 1
after the transition, which appears as a WARN_ON_ONCE in enqueue_hrtimer().
Aside of that, the bulk of the per CPU state is not reset either, which
means there are dangling pointers in the worst case.
Address this by adding a corresponding startup() callback, which resets the
stale per CPU state and sets the online flag.
[ tglx: Make the new callback unconditionally available, remove the online
modification in the prepare() callback and clear the remaining
state in the starting callback instead of the prepare callback ] |
In the Linux kernel, the following vulnerability has been resolved:
exfat: fix the new buffer was not zeroed before writing
Before writing, if a buffer_head marked as new, its data must
be zeroed, otherwise uninitialized data in the page cache will
be written.
So this commit uses folio_zero_new_buffers() to zero the new
buffers before ->write_end(). |
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix a missing return value check bug
In the smb2_send_interim_resp(), if ksmbd_alloc_work_struct()
fails to allocate a node, it returns a NULL pointer to the
in_work pointer. This can lead to an illegal memory write of
in_work->response_buf when allocate_interim_rsp_buf() attempts
to perform a kzalloc() on it.
To address this issue, incorporating a check for the return
value of ksmbd_alloc_work_struct() ensures that the function
returns immediately upon allocation failure, thereby preventing
the aforementioned illegal memory access. |
In the Linux kernel, the following vulnerability has been resolved:
iio: pressure: zpa2326: fix information leak in triggered buffer
The 'sample' local struct is used to push data to user space from a
triggered buffer, but it has a hole between the temperature and the
timestamp (u32 pressure, u16 temperature, GAP, u64 timestamp).
This hole is never initialized.
Initialize the struct to zero before using it to avoid pushing
uninitialized information to userspace. |
In the Linux kernel, the following vulnerability has been resolved:
iio: dummy: iio_simply_dummy_buffer: fix information leak in triggered buffer
The 'data' array is allocated via kmalloc() and it is used to push data
to user space from a triggered buffer, but it does not set values for
inactive channels, as it only uses iio_for_each_active_channel()
to assign new values.
Use kzalloc for the memory allocation to avoid pushing uninitialized
information to userspace. |
In the Linux kernel, the following vulnerability has been resolved:
iio: light: vcnl4035: fix information leak in triggered buffer
The 'buffer' local array is used to push data to userspace from a
triggered buffer, but it does not set an initial value for the single
data element, which is an u16 aligned to 8 bytes. That leaves at least
4 bytes uninitialized even after writing an integer value with
regmap_read().
Initialize the array to zero before using it to avoid pushing
uninitialized information to userspace. |
In the Linux kernel, the following vulnerability has been resolved:
iio: light: bh1745: fix information leak in triggered buffer
The 'scan' local struct is used to push data to user space from a
triggered buffer, but it does not set values for inactive channels, as
it only uses iio_for_each_active_channel() to assign new values.
Initialize the struct to zero before using it to avoid pushing
uninitialized information to userspace. |
In the Linux kernel, the following vulnerability has been resolved:
iio: imu: kmx61: fix information leak in triggered buffer
The 'buffer' local array is used to push data to user space from a
triggered buffer, but it does not set values for inactive channels, as
it only uses iio_for_each_active_channel() to assign new values.
Initialize the array to zero before using it to avoid pushing
uninitialized information to userspace. |
In the Linux kernel, the following vulnerability has been resolved:
iio: adc: rockchip_saradc: fix information leak in triggered buffer
The 'data' local struct is used to push data to user space from a
triggered buffer, but it does not set values for inactive channels, as
it only uses iio_for_each_active_channel() to assign new values.
Initialize the struct to zero before using it to avoid pushing
uninitialized information to userspace. |
In the Linux kernel, the following vulnerability has been resolved:
iio: adc: ti-ads8688: fix information leak in triggered buffer
The 'buffer' local array is used to push data to user space from a
triggered buffer, but it does not set values for inactive channels, as
it only uses iio_for_each_active_channel() to assign new values.
Initialize the array to zero before using it to avoid pushing
uninitialized information to userspace. |