CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_event: Fix UAF in hci_conn_tx_dequeue
This fixes the following UAF caused by not properly locking hdev when
processing HCI_EV_NUM_COMP_PKTS:
BUG: KASAN: slab-use-after-free in hci_conn_tx_dequeue+0x1be/0x220 net/bluetooth/hci_conn.c:3036
Read of size 4 at addr ffff8880740f0940 by task kworker/u11:0/54
CPU: 1 UID: 0 PID: 54 Comm: kworker/u11:0 Not tainted 6.16.0-rc7 #3 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
Workqueue: hci1 hci_rx_work
Call Trace:
<TASK>
dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xca/0x230 mm/kasan/report.c:480
kasan_report+0x118/0x150 mm/kasan/report.c:593
hci_conn_tx_dequeue+0x1be/0x220 net/bluetooth/hci_conn.c:3036
hci_num_comp_pkts_evt+0x1c8/0xa50 net/bluetooth/hci_event.c:4404
hci_event_func net/bluetooth/hci_event.c:7477 [inline]
hci_event_packet+0x7e0/0x1200 net/bluetooth/hci_event.c:7531
hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070
process_one_work kernel/workqueue.c:3238 [inline]
process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
kthread+0x70e/0x8a0 kernel/kthread.c:464
ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245
</TASK>
Allocated by task 54:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4359
kmalloc_noprof include/linux/slab.h:905 [inline]
kzalloc_noprof include/linux/slab.h:1039 [inline]
__hci_conn_add+0x233/0x1b30 net/bluetooth/hci_conn.c:939
le_conn_complete_evt+0x3d6/0x1220 net/bluetooth/hci_event.c:5628
hci_le_enh_conn_complete_evt+0x189/0x470 net/bluetooth/hci_event.c:5794
hci_event_func net/bluetooth/hci_event.c:7474 [inline]
hci_event_packet+0x78c/0x1200 net/bluetooth/hci_event.c:7531
hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070
process_one_work kernel/workqueue.c:3238 [inline]
process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
kthread+0x70e/0x8a0 kernel/kthread.c:464
ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245
Freed by task 9572:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x62/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2381 [inline]
slab_free mm/slub.c:4643 [inline]
kfree+0x18e/0x440 mm/slub.c:4842
device_release+0x9c/0x1c0
kobject_cleanup lib/kobject.c:689 [inline]
kobject_release lib/kobject.c:720 [inline]
kref_put include/linux/kref.h:65 [inline]
kobject_put+0x22b/0x480 lib/kobject.c:737
hci_conn_cleanup net/bluetooth/hci_conn.c:175 [inline]
hci_conn_del+0x8ff/0xcb0 net/bluetooth/hci_conn.c:1173
hci_abort_conn_sync+0x5d1/0xdf0 net/bluetooth/hci_sync.c:5689
hci_cmd_sync_work+0x210/0x3a0 net/bluetooth/hci_sync.c:332
process_one_work kernel/workqueue.c:3238 [inline]
process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
kthread+0x70e/0x8a0 kernel/kthread.c:464
ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245 |
The Flex QR Code Generator plugin for WordPress is vulnerable to arbitrary file uploads due to missing file type validation in thesave_qr_code_to_db() function in all versions up to, and including, 1.2.5. This makes it possible for unauthenticated attackers to upload arbitrary files on the affected site's server which may make remote code execution possible. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: Fix possible UAFs
This attemps to fix possible UAFs caused by struct mgmt_pending being
freed while still being processed like in the following trace, in order
to fix mgmt_pending_valid is introduce and use to check if the
mgmt_pending hasn't been removed from the pending list, on the complete
callbacks it is used to check and in addtion remove the cmd from the list
while holding mgmt_pending_lock to avoid TOCTOU problems since if the cmd
is left on the list it can still be accessed and freed.
BUG: KASAN: slab-use-after-free in mgmt_add_adv_patterns_monitor_sync+0x35/0x50 net/bluetooth/mgmt.c:5223
Read of size 8 at addr ffff8880709d4dc0 by task kworker/u11:0/55
CPU: 0 UID: 0 PID: 55 Comm: kworker/u11:0 Not tainted 6.16.4 #2 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
Workqueue: hci0 hci_cmd_sync_work
Call Trace:
<TASK>
dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xca/0x240 mm/kasan/report.c:482
kasan_report+0x118/0x150 mm/kasan/report.c:595
mgmt_add_adv_patterns_monitor_sync+0x35/0x50 net/bluetooth/mgmt.c:5223
hci_cmd_sync_work+0x210/0x3a0 net/bluetooth/hci_sync.c:332
process_one_work kernel/workqueue.c:3238 [inline]
process_scheduled_works+0xade/0x17b0 kernel/workqueue.c:3321
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
kthread+0x711/0x8a0 kernel/kthread.c:464
ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16.4/arch/x86/entry/entry_64.S:245
</TASK>
Allocated by task 12210:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4364
kmalloc_noprof include/linux/slab.h:905 [inline]
kzalloc_noprof include/linux/slab.h:1039 [inline]
mgmt_pending_new+0x65/0x1e0 net/bluetooth/mgmt_util.c:269
mgmt_pending_add+0x35/0x140 net/bluetooth/mgmt_util.c:296
__add_adv_patterns_monitor+0x130/0x200 net/bluetooth/mgmt.c:5247
add_adv_patterns_monitor+0x214/0x360 net/bluetooth/mgmt.c:5364
hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719
hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839
sock_sendmsg_nosec net/socket.c:714 [inline]
__sock_sendmsg+0x219/0x270 net/socket.c:729
sock_write_iter+0x258/0x330 net/socket.c:1133
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x5c9/0xb30 fs/read_write.c:686
ksys_write+0x145/0x250 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 12221:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x62/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2381 [inline]
slab_free mm/slub.c:4648 [inline]
kfree+0x18e/0x440 mm/slub.c:4847
mgmt_pending_free net/bluetooth/mgmt_util.c:311 [inline]
mgmt_pending_foreach+0x30d/0x380 net/bluetooth/mgmt_util.c:257
__mgmt_power_off+0x169/0x350 net/bluetooth/mgmt.c:9444
hci_dev_close_sync+0x754/0x1330 net/bluetooth/hci_sync.c:5290
hci_dev_do_close net/bluetooth/hci_core.c:501 [inline]
hci_dev_close+0x108/0x200 net/bluetooth/hci_core.c:526
sock_do_ioctl+0xd9/0x300 net/socket.c:1192
sock_ioctl+0x576/0x790 net/socket.c:1313
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl+0xf9/0x170 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xf
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
nexthop: Forbid FDB status change while nexthop is in a group
The kernel forbids the creation of non-FDB nexthop groups with FDB
nexthops:
# ip nexthop add id 1 via 192.0.2.1 fdb
# ip nexthop add id 2 group 1
Error: Non FDB nexthop group cannot have fdb nexthops.
And vice versa:
# ip nexthop add id 3 via 192.0.2.2 dev dummy1
# ip nexthop add id 4 group 3 fdb
Error: FDB nexthop group can only have fdb nexthops.
However, as long as no routes are pointing to a non-FDB nexthop group,
the kernel allows changing the type of a nexthop from FDB to non-FDB and
vice versa:
# ip nexthop add id 5 via 192.0.2.2 dev dummy1
# ip nexthop add id 6 group 5
# ip nexthop replace id 5 via 192.0.2.2 fdb
# echo $?
0
This configuration is invalid and can result in a NPD [1] since FDB
nexthops are not associated with a nexthop device:
# ip route add 198.51.100.1/32 nhid 6
# ping 198.51.100.1
Fix by preventing nexthop FDB status change while the nexthop is in a
group:
# ip nexthop add id 7 via 192.0.2.2 dev dummy1
# ip nexthop add id 8 group 7
# ip nexthop replace id 7 via 192.0.2.2 fdb
Error: Cannot change nexthop FDB status while in a group.
[1]
BUG: kernel NULL pointer dereference, address: 00000000000003c0
[...]
Oops: Oops: 0000 [#1] SMP
CPU: 6 UID: 0 PID: 367 Comm: ping Not tainted 6.17.0-rc6-virtme-gb65678cacc03 #1 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-4.fc41 04/01/2014
RIP: 0010:fib_lookup_good_nhc+0x1e/0x80
[...]
Call Trace:
<TASK>
fib_table_lookup+0x541/0x650
ip_route_output_key_hash_rcu+0x2ea/0x970
ip_route_output_key_hash+0x55/0x80
__ip4_datagram_connect+0x250/0x330
udp_connect+0x2b/0x60
__sys_connect+0x9c/0xd0
__x64_sys_connect+0x18/0x20
do_syscall_64+0xa4/0x2a0
entry_SYSCALL_64_after_hwframe+0x4b/0x53 |
In the Linux kernel, the following vulnerability has been resolved:
net: tun: Update napi->skb after XDP process
The syzbot report a UAF issue:
BUG: KASAN: slab-use-after-free in skb_reset_mac_header include/linux/skbuff.h:3150 [inline]
BUG: KASAN: slab-use-after-free in napi_frags_skb net/core/gro.c:723 [inline]
BUG: KASAN: slab-use-after-free in napi_gro_frags+0x6e/0x1030 net/core/gro.c:758
Read of size 8 at addr ffff88802ef22c18 by task syz.0.17/6079
CPU: 0 UID: 0 PID: 6079 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full)
Call Trace:
<TASK>
dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xca/0x240 mm/kasan/report.c:482
kasan_report+0x118/0x150 mm/kasan/report.c:595
skb_reset_mac_header include/linux/skbuff.h:3150 [inline]
napi_frags_skb net/core/gro.c:723 [inline]
napi_gro_frags+0x6e/0x1030 net/core/gro.c:758
tun_get_user+0x28cb/0x3e20 drivers/net/tun.c:1920
tun_chr_write_iter+0x113/0x200 drivers/net/tun.c:1996
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x5c9/0xb30 fs/read_write.c:686
ksys_write+0x145/0x250 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
Allocated by task 6079:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
unpoison_slab_object mm/kasan/common.c:330 [inline]
__kasan_mempool_unpoison_object+0xa0/0x170 mm/kasan/common.c:558
kasan_mempool_unpoison_object include/linux/kasan.h:388 [inline]
napi_skb_cache_get+0x37b/0x6d0 net/core/skbuff.c:295
__alloc_skb+0x11e/0x2d0 net/core/skbuff.c:657
napi_alloc_skb+0x84/0x7d0 net/core/skbuff.c:811
napi_get_frags+0x69/0x140 net/core/gro.c:673
tun_napi_alloc_frags drivers/net/tun.c:1404 [inline]
tun_get_user+0x77c/0x3e20 drivers/net/tun.c:1784
tun_chr_write_iter+0x113/0x200 drivers/net/tun.c:1996
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x5c9/0xb30 fs/read_write.c:686
ksys_write+0x145/0x250 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 6079:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576
poison_slab_object mm/kasan/common.c:243 [inline]
__kasan_slab_free+0x5b/0x80 mm/kasan/common.c:275
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2422 [inline]
slab_free mm/slub.c:4695 [inline]
kmem_cache_free+0x18f/0x400 mm/slub.c:4797
skb_pp_cow_data+0xdd8/0x13e0 net/core/skbuff.c:969
netif_skb_check_for_xdp net/core/dev.c:5390 [inline]
netif_receive_generic_xdp net/core/dev.c:5431 [inline]
do_xdp_generic+0x699/0x11a0 net/core/dev.c:5499
tun_get_user+0x2523/0x3e20 drivers/net/tun.c:1872
tun_chr_write_iter+0x113/0x200 drivers/net/tun.c:1996
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x5c9/0xb30 fs/read_write.c:686
ksys_write+0x145/0x250 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
After commit e6d5dbdd20aa ("xdp: add multi-buff support for xdp running in
generic mode"), the original skb may be freed in skb_pp_cow_data() when
XDP program was attached, which was allocated in tun_napi_alloc_frags().
However, the napi->skb still point to the original skb, update it after
XDP process. |
In the Linux kernel, the following vulnerability has been resolved:
i40e: fix input validation logic for action_meta
Fix condition to check 'greater or equal' to prevent OOB dereference. |
The onOffice for WP-Websites plugin for WordPress is vulnerable to SQL Injection via the 'order' parameter in all versions up to, and including, 5.7 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Editor-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. |
In the Linux kernel, the following vulnerability has been resolved:
can: hi311x: populate ndo_change_mtu() to prevent buffer overflow
Sending an PF_PACKET allows to bypass the CAN framework logic and to
directly reach the xmit() function of a CAN driver. The only check
which is performed by the PF_PACKET framework is to make sure that
skb->len fits the interface's MTU.
Unfortunately, because the sun4i_can driver does not populate its
net_device_ops->ndo_change_mtu(), it is possible for an attacker to
configure an invalid MTU by doing, for example:
$ ip link set can0 mtu 9999
After doing so, the attacker could open a PF_PACKET socket using the
ETH_P_CANXL protocol:
socket(PF_PACKET, SOCK_RAW, htons(ETH_P_CANXL))
to inject a malicious CAN XL frames. For example:
struct canxl_frame frame = {
.flags = 0xff,
.len = 2048,
};
The CAN drivers' xmit() function are calling can_dev_dropped_skb() to
check that the skb is valid, unfortunately under above conditions, the
malicious packet is able to go through can_dev_dropped_skb() checks:
1. the skb->protocol is set to ETH_P_CANXL which is valid (the
function does not check the actual device capabilities).
2. the length is a valid CAN XL length.
And so, hi3110_hard_start_xmit() receives a CAN XL frame which it is
not able to correctly handle and will thus misinterpret it as a CAN
frame. The driver will consume frame->len as-is with no further
checks.
This can result in a buffer overflow later on in hi3110_hw_tx() on
this line:
memcpy(buf + HI3110_FIFO_EXT_DATA_OFF,
frame->data, frame->len);
Here, frame->len corresponds to the flags field of the CAN XL frame.
In our previous example, we set canxl_frame->flags to 0xff. Because
the maximum expected length is 8, a buffer overflow of 247 bytes
occurs!
Populate net_device_ops->ndo_change_mtu() to ensure that the
interface's MTU can not be set to anything bigger than CAN_MTU. By
fixing the root cause, this prevents the buffer overflow. |
In the Linux kernel, the following vulnerability has been resolved:
futex: Prevent use-after-free during requeue-PI
syzbot managed to trigger the following race:
T1 T2
futex_wait_requeue_pi()
futex_do_wait()
schedule()
futex_requeue()
futex_proxy_trylock_atomic()
futex_requeue_pi_prepare()
requeue_pi_wake_futex()
futex_requeue_pi_complete()
/* preempt */
* timeout/ signal wakes T1 *
futex_requeue_pi_wakeup_sync() // Q_REQUEUE_PI_LOCKED
futex_hash_put()
// back to userland, on stack futex_q is garbage
/* back */
wake_up_state(q->task, TASK_NORMAL);
In this scenario futex_wait_requeue_pi() is able to leave without using
futex_q::lock_ptr for synchronization.
This can be prevented by reading futex_q::task before updating the
futex_q::requeue_state. A reference on the task_struct is not needed
because requeue_pi_wake_futex() is invoked with a spinlock_t held which
implies a RCU read section.
Even if T1 terminates immediately after, the task_struct will remain valid
during T2's wake_up_state(). A READ_ONCE on futex_q::task before
futex_requeue_pi_complete() is enough because it ensures that the variable
is read before the state is updated.
Read futex_q::task before updating the requeue state, use it for the
following wakeup. |
The Dhivehi Text plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'dhivehi' shortcode in all versions up to, and including, 0.1 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
In the Linux kernel, the following vulnerability has been resolved:
media: rc: fix races with imon_disconnect()
Syzbot reports a KASAN issue as below:
BUG: KASAN: use-after-free in __create_pipe include/linux/usb.h:1945 [inline]
BUG: KASAN: use-after-free in send_packet+0xa2d/0xbc0 drivers/media/rc/imon.c:627
Read of size 4 at addr ffff8880256fb000 by task syz-executor314/4465
CPU: 2 PID: 4465 Comm: syz-executor314 Not tainted 6.0.0-rc1-syzkaller #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-2 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:317 [inline]
print_report.cold+0x2ba/0x6e9 mm/kasan/report.c:433
kasan_report+0xb1/0x1e0 mm/kasan/report.c:495
__create_pipe include/linux/usb.h:1945 [inline]
send_packet+0xa2d/0xbc0 drivers/media/rc/imon.c:627
vfd_write+0x2d9/0x550 drivers/media/rc/imon.c:991
vfs_write+0x2d7/0xdd0 fs/read_write.c:576
ksys_write+0x127/0x250 fs/read_write.c:631
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The iMON driver improperly releases the usb_device reference in
imon_disconnect without coordinating with active users of the
device.
Specifically, the fields usbdev_intf0 and usbdev_intf1 are not
protected by the users counter (ictx->users). During probe,
imon_init_intf0 or imon_init_intf1 increments the usb_device
reference count depending on the interface. However, during
disconnect, usb_put_dev is called unconditionally, regardless of
actual usage.
As a result, if vfd_write or other operations are still in
progress after disconnect, this can lead to a use-after-free of
the usb_device pointer.
Thread 1 vfd_write Thread 2 imon_disconnect
...
if
usb_put_dev(ictx->usbdev_intf0)
else
usb_put_dev(ictx->usbdev_intf1)
...
while
send_packet
if
pipe = usb_sndintpipe(
ictx->usbdev_intf0) UAF
else
pipe = usb_sndctrlpipe(
ictx->usbdev_intf0, 0) UAF
Guard access to usbdev_intf0 and usbdev_intf1 after disconnect by
checking ictx->disconnected in all writer paths. Add early return
with -ENODEV in send_packet(), vfd_write(), lcd_write() and
display_open() if the device is no longer present.
Set and read ictx->disconnected under ictx->lock to ensure memory
synchronization. Acquire the lock in imon_disconnect() before setting
the flag to synchronize with any ongoing operations.
Ensure writers exit early and safely after disconnect before the USB
core proceeds with cleanup.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: target: target_core_configfs: Add length check to avoid buffer overflow
A buffer overflow arises from the usage of snprintf to write into the
buffer "buf" in target_lu_gp_members_show function located in
/drivers/target/target_core_configfs.c. This buffer is allocated with
size LU_GROUP_NAME_BUF (256 bytes).
snprintf(...) formats multiple strings into buf with the HBA name
(hba->hba_group.cg_item), a slash character, a devicename (dev->
dev_group.cg_item) and a newline character, the total formatted string
length may exceed the buffer size of 256 bytes.
Since snprintf() returns the total number of bytes that would have been
written (the length of %s/%sn ), this value may exceed the buffer length
(256 bytes) passed to memcpy(), this will ultimately cause function
memcpy reporting a buffer overflow error.
An additional check of the return value of snprintf() can avoid this
buffer overflow. |
The DocoDoco Store Locator plugin for WordPress is vulnerable to arbitrary file uploads due to missing file type validation in the zip upload functionality in all versions up to, and including, 1.0.1. This makes it possible for authenticated attackers, with Editor-level access and above, to upload arbitrary files on the affected site's server which may make remote code execution possible. |
In the Linux kernel, the following vulnerability has been resolved:
i40e: fix idx validation in i40e_validate_queue_map
Ensure idx is within range of active/initialized TCs when iterating over
vf->ch[idx] in i40e_validate_queue_map(). |
The WPBakery Page Builder plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the Custom JS module in all versions up to, and including, 8.6.1. This is due to insufficient input sanitization and output escaping of user-supplied JavaScript code in the Custom JS module. This makes it possible for authenticated attackers with contributor-level access or higher to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page via the WPBakery Page Builder Custom JS module granted they have access to the WPBakery editor for post types. |
The Digiseller plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'ds' shortcode in all versions up to, and including, 1.3.0 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_event: Fix UAF in hci_acl_create_conn_sync
This fixes the following UFA in hci_acl_create_conn_sync where a
connection still pending is command submission (conn->state == BT_OPEN)
maybe freed, also since this also can happen with the likes of
hci_le_create_conn_sync fix it as well:
BUG: KASAN: slab-use-after-free in hci_acl_create_conn_sync+0x5ef/0x790 net/bluetooth/hci_sync.c:6861
Write of size 2 at addr ffff88805ffcc038 by task kworker/u11:2/9541
CPU: 1 UID: 0 PID: 9541 Comm: kworker/u11:2 Not tainted 6.16.0-rc7 #3 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
Workqueue: hci3 hci_cmd_sync_work
Call Trace:
<TASK>
dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xca/0x230 mm/kasan/report.c:480
kasan_report+0x118/0x150 mm/kasan/report.c:593
hci_acl_create_conn_sync+0x5ef/0x790 net/bluetooth/hci_sync.c:6861
hci_cmd_sync_work+0x210/0x3a0 net/bluetooth/hci_sync.c:332
process_one_work kernel/workqueue.c:3238 [inline]
process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
kthread+0x70e/0x8a0 kernel/kthread.c:464
ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245
</TASK>
Allocated by task 123736:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4359
kmalloc_noprof include/linux/slab.h:905 [inline]
kzalloc_noprof include/linux/slab.h:1039 [inline]
__hci_conn_add+0x233/0x1b30 net/bluetooth/hci_conn.c:939
hci_conn_add_unset net/bluetooth/hci_conn.c:1051 [inline]
hci_connect_acl+0x16c/0x4e0 net/bluetooth/hci_conn.c:1634
pair_device+0x418/0xa70 net/bluetooth/mgmt.c:3556
hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719
hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839
sock_sendmsg_nosec net/socket.c:712 [inline]
__sock_sendmsg+0x219/0x270 net/socket.c:727
sock_write_iter+0x258/0x330 net/socket.c:1131
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x54b/0xa90 fs/read_write.c:686
ksys_write+0x145/0x250 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 103680:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x62/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2381 [inline]
slab_free mm/slub.c:4643 [inline]
kfree+0x18e/0x440 mm/slub.c:4842
device_release+0x9c/0x1c0
kobject_cleanup lib/kobject.c:689 [inline]
kobject_release lib/kobject.c:720 [inline]
kref_put include/linux/kref.h:65 [inline]
kobject_put+0x22b/0x480 lib/kobject.c:737
hci_conn_cleanup net/bluetooth/hci_conn.c:175 [inline]
hci_conn_del+0x8ff/0xcb0 net/bluetooth/hci_conn.c:1173
hci_conn_complete_evt+0x3c7/0x1040 net/bluetooth/hci_event.c:3199
hci_event_func net/bluetooth/hci_event.c:7477 [inline]
hci_event_packet+0x7e0/0x1200 net/bluetooth/hci_event.c:7531
hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070
process_one_work kernel/workqueue.c:3238 [inline]
process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
kthread+0x70e/0x8a0 kernel/kthread.c:464
ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 home/kwqcheii/sour
---truncated--- |
The WP Dashboard Chat plugin for WordPress is vulnerable to SQL Injection via the ‘id’ parameter in all versions up to, and including, 1.0.3 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Contributor-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. |
The Content Writer plugin for WordPress is vulnerable to Sensitive Information Exposure in all versions up to, and including, 3.6.8 through publicly exposed log files. This makes it possible for unauthenticated attackers to view potentially sensitive information contained in the exposed log files. |
On BIG-IP systems, undisclosed traffic can cause data corruption and unauthorized data modification in protocols which do not have message integrity protection. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated. |