| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Free of memory not on the heap in Windows Ancillary Function Driver for WinSock allows an authorized attacker to elevate privileges locally. |
| Time-of-check time-of-use (toctou) race condition in Windows Kernel Memory allows an authorized attacker to elevate privileges locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Printer Association Object allows an authorized attacker to elevate privileges locally. |
| Exposure of sensitive information to an unauthorized actor in Desktop Windows Manager allows an authorized attacker to disclose information locally. |
| Incorrect privilege assignment in Windows Hello allows an unauthorized attacker to perform tampering locally. |
| Improper verification of cryptographic signature in Windows Admin Center allows an authorized attacker to elevate privileges locally. |
| Missing authentication for critical function in SQL Server allows an authorized attacker to elevate privileges over a network. |
| Improper access control in Windows Deployment Services allows an unauthorized attacker to execute code over an adjacent network. |
| Windows Secure Boot stores Microsoft certificates in the UEFI KEK and DB. These original certificates are approaching expiration, and devices containing affected certificate versions must update them to maintain Secure Boot functionality and avoid compromising security by losing security fixes related to Windows boot manager or Secure Boot.
The operating system’s certificate update protection mechanism relies on firmware components that might contain defects, which can cause certificate trust updates to fail or behave unpredictably. This leads to potential disruption of the Secure Boot trust chain and requires careful validation and deployment to restore intended security guarantees.
Certificate Authority (CA)
Location
Purpose
Expiration Date
Microsoft Corporation KEK CA 2011
KEK
Signs updates to the DB and DBX
06/24/2026
Microsoft Corporation UEFI CA 2011
DB
Signs 3rd party boot loaders, Option ROMs, etc.
06/27/2026
Microsoft Windows Production PCA 2011
DB
Signs the Windows Boot Manager
10/19/2026
For more information see this CVE and Windows Secure Boot certificate expiration and CA updates. |
| Use of uninitialized resource in Dynamic Root of Trust for Measurement (DRTM) allows an authorized attacker to disclose information locally. |
| Greenshot is an open source Windows screenshot utility. Versions 1.3.310 and below arvulnerable to OS Command Injection through unsanitized filename processing. The FormatArguments method in ExternalCommandDestination.cs:269 uses string.Format() to insert user-controlled filenames directly into shell commands without sanitization, allowing attackers to execute arbitrary commands by crafting malicious filenames containing shell metacharacters. This issue is fixed in version 1.3.311. |
| Insecure Permissions vulnerability in PDQ Smart Deploy V.3.0.2040 allows a local attacker to execute arbtirary code via the \HKLM\SYSTEM\Setup\SmartDeploy component |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: Fix kernel crash due to PR_SET_TAGGED_ADDR_CTRL
When userspace does PR_SET_TAGGED_ADDR_CTRL, but Supm extension is not
available, the kernel crashes:
Oops - illegal instruction [#1]
[snip]
epc : set_tagged_addr_ctrl+0x112/0x15a
ra : set_tagged_addr_ctrl+0x74/0x15a
epc : ffffffff80011ace ra : ffffffff80011a30 sp : ffffffc60039be10
[snip]
status: 0000000200000120 badaddr: 0000000010a79073 cause: 0000000000000002
set_tagged_addr_ctrl+0x112/0x15a
__riscv_sys_prctl+0x352/0x73c
do_trap_ecall_u+0x17c/0x20c
andle_exception+0x150/0x15c
Fix it by checking if Supm is available. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/edid: fix info leak when failing to get panel id
Make sure to clear the transfer buffer before fetching the EDID to
avoid leaking slab data to the logs on errors that leave the buffer
unchanged. |
| An issue in PDQ Smart Deploy V.3.0.2040 allows an attacker to escalate privileges via the Credential encryption routines in SDCommon.dll |
| In the Linux kernel, the following vulnerability has been resolved:
platform/chrome: cros_ec_chardev: fix kernel data leak from ioctl
It is possible to peep kernel page's data by providing larger `insize`
in struct cros_ec_command[1] when invoking EC host commands.
Fix it by using zeroed memory.
[1]: https://elixir.bootlin.com/linux/v6.2/source/include/linux/platform_data/cros_ec_proto.h#L74 |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix kernel-infoleak in nilfs_ioctl_wrap_copy()
The ioctl helper function nilfs_ioctl_wrap_copy(), which exchanges a
metadata array to/from user space, may copy uninitialized buffer regions
to user space memory for read-only ioctl commands NILFS_IOCTL_GET_SUINFO
and NILFS_IOCTL_GET_CPINFO.
This can occur when the element size of the user space metadata given by
the v_size member of the argument nilfs_argv structure is larger than the
size of the metadata element (nilfs_suinfo structure or nilfs_cpinfo
structure) on the file system side.
KMSAN-enabled kernels detect this issue as follows:
BUG: KMSAN: kernel-infoleak in instrument_copy_to_user
include/linux/instrumented.h:121 [inline]
BUG: KMSAN: kernel-infoleak in _copy_to_user+0xc0/0x100 lib/usercopy.c:33
instrument_copy_to_user include/linux/instrumented.h:121 [inline]
_copy_to_user+0xc0/0x100 lib/usercopy.c:33
copy_to_user include/linux/uaccess.h:169 [inline]
nilfs_ioctl_wrap_copy+0x6fa/0xc10 fs/nilfs2/ioctl.c:99
nilfs_ioctl_get_info fs/nilfs2/ioctl.c:1173 [inline]
nilfs_ioctl+0x2402/0x4450 fs/nilfs2/ioctl.c:1290
nilfs_compat_ioctl+0x1b8/0x200 fs/nilfs2/ioctl.c:1343
__do_compat_sys_ioctl fs/ioctl.c:968 [inline]
__se_compat_sys_ioctl+0x7dd/0x1000 fs/ioctl.c:910
__ia32_compat_sys_ioctl+0x93/0xd0 fs/ioctl.c:910
do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline]
__do_fast_syscall_32+0xa2/0x100 arch/x86/entry/common.c:178
do_fast_syscall_32+0x37/0x80 arch/x86/entry/common.c:203
do_SYSENTER_32+0x1f/0x30 arch/x86/entry/common.c:246
entry_SYSENTER_compat_after_hwframe+0x70/0x82
Uninit was created at:
__alloc_pages+0x9f6/0xe90 mm/page_alloc.c:5572
alloc_pages+0xab0/0xd80 mm/mempolicy.c:2287
__get_free_pages+0x34/0xc0 mm/page_alloc.c:5599
nilfs_ioctl_wrap_copy+0x223/0xc10 fs/nilfs2/ioctl.c:74
nilfs_ioctl_get_info fs/nilfs2/ioctl.c:1173 [inline]
nilfs_ioctl+0x2402/0x4450 fs/nilfs2/ioctl.c:1290
nilfs_compat_ioctl+0x1b8/0x200 fs/nilfs2/ioctl.c:1343
__do_compat_sys_ioctl fs/ioctl.c:968 [inline]
__se_compat_sys_ioctl+0x7dd/0x1000 fs/ioctl.c:910
__ia32_compat_sys_ioctl+0x93/0xd0 fs/ioctl.c:910
do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline]
__do_fast_syscall_32+0xa2/0x100 arch/x86/entry/common.c:178
do_fast_syscall_32+0x37/0x80 arch/x86/entry/common.c:203
do_SYSENTER_32+0x1f/0x30 arch/x86/entry/common.c:246
entry_SYSENTER_compat_after_hwframe+0x70/0x82
Bytes 16-127 of 3968 are uninitialized
...
This eliminates the leak issue by initializing the page allocated as
buffer using get_zeroed_page(). |
| ClipBucket v5 is an open source video sharing platform. Versions 5.5.2-#187 and below allow an attacker to perform Blind SQL Injection through the add comment section within a channel. When adding a comment within a channel, there is a POST request to the /actions/ajax.php endpoint. The obj_id parameter within the POST request to /actions/ajax.php is then used within the user_exists function of the upload/includes/classes/user.class. php file as the $id parameter. It is then used within the count function of the upload/includes/classes/db.class. php file. The $id parameter is concatenated into the query without validation or sanitization, and a user-supplied input like 1' or 1=1-- - can be used to trigger the injection. This issue does not have a fix at the time of publication. |
| In the Linux kernel, the following vulnerability has been resolved:
ethtool: cmis_cdb: use correct rpl size in ethtool_cmis_module_poll()
rpl is passed as a pointer to ethtool_cmis_module_poll(), so the correct
size of rpl is sizeof(*rpl) which should be just 1 byte. Using the
pointer size instead can cause stack corruption:
Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: ethtool_cmis_wait_for_cond+0xf4/0x100
CPU: 72 UID: 0 PID: 4440 Comm: kworker/72:2 Kdump: loaded Tainted: G OE 6.11.0 #24
Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: Dell Inc. PowerEdge R760/04GWWM, BIOS 1.6.6 09/20/2023
Workqueue: events module_flash_fw_work
Call Trace:
<TASK>
panic+0x339/0x360
? ethtool_cmis_wait_for_cond+0xf4/0x100
? __pfx_status_success+0x10/0x10
? __pfx_status_fail+0x10/0x10
__stack_chk_fail+0x10/0x10
ethtool_cmis_wait_for_cond+0xf4/0x100
ethtool_cmis_cdb_execute_cmd+0x1fc/0x330
? __pfx_status_fail+0x10/0x10
cmis_cdb_module_features_get+0x6d/0xd0
ethtool_cmis_cdb_init+0x8a/0xd0
ethtool_cmis_fw_update+0x46/0x1d0
module_flash_fw_work+0x17/0xa0
process_one_work+0x179/0x390
worker_thread+0x239/0x340
? __pfx_worker_thread+0x10/0x10
kthread+0xcc/0x100
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2d/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix deinitialization of firmware resources
Currently, in ath11k_ahb_fw_resources_init(), iommu domain
mapping is done only for the chipsets having fixed firmware
memory. Also, for such chipsets, mapping is done only if it
does not have TrustZone support.
During deinitialization, only if TrustZone support is not there,
iommu is unmapped back. However, for non fixed firmware memory
chipsets, TrustZone support is not there and this makes the
condition check to true and it tries to unmap the memory which
was not mapped during initialization.
This leads to the following trace -
[ 83.198790] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008
[ 83.259537] Modules linked in: ath11k_ahb ath11k qmi_helpers
.. snip ..
[ 83.280286] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 83.287228] pc : __iommu_unmap+0x30/0x140
[ 83.293907] lr : iommu_unmap+0x5c/0xa4
[ 83.298072] sp : ffff80000b3abad0
.. snip ..
[ 83.369175] Call trace:
[ 83.376282] __iommu_unmap+0x30/0x140
[ 83.378541] iommu_unmap+0x5c/0xa4
[ 83.382360] ath11k_ahb_fw_resource_deinit.part.12+0x2c/0xac [ath11k_ahb]
[ 83.385666] ath11k_ahb_free_resources+0x140/0x17c [ath11k_ahb]
[ 83.392521] ath11k_ahb_shutdown+0x34/0x40 [ath11k_ahb]
[ 83.398248] platform_shutdown+0x20/0x2c
[ 83.403455] device_shutdown+0x16c/0x1c4
[ 83.407621] kernel_restart_prepare+0x34/0x3c
[ 83.411529] kernel_restart+0x14/0x74
[ 83.415781] __do_sys_reboot+0x1c4/0x22c
[ 83.419427] __arm64_sys_reboot+0x1c/0x24
[ 83.423420] invoke_syscall+0x44/0xfc
[ 83.427326] el0_svc_common.constprop.3+0xac/0xe8
[ 83.430974] do_el0_svc+0xa0/0xa8
[ 83.435659] el0_svc+0x1c/0x44
[ 83.438957] el0t_64_sync_handler+0x60/0x144
[ 83.441910] el0t_64_sync+0x15c/0x160
[ 83.446343] Code: aa0103f4 f9400001 f90027a1 d2800001 (f94006a0)
[ 83.449903] ---[ end trace 0000000000000000 ]---
This can be reproduced by probing an AHB chipset which is not
having a fixed memory region. During reboot (or rmmod) trace
can be seen.
Fix this issue by adding a condition check on firmware fixed memory
hw_param as done in the counter initialization function.
Tested-on: IPQ8074 hw2.0 AHB WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1 |