Search Results (14287 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-48797 1 Linux 1 Linux Kernel 2025-10-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm: don't try to NUMA-migrate COW pages that have other uses Oded Gabbay reports that enabling NUMA balancing causes corruption with his Gaudi accelerator test load: "All the details are in the bug, but the bottom line is that somehow, this patch causes corruption when the numa balancing feature is enabled AND we don't use process affinity AND we use GUP to pin pages so our accelerator can DMA to/from system memory. Either disabling numa balancing, using process affinity to bind to specific numa-node or reverting this patch causes the bug to disappear" and Oded bisected the issue to commit 09854ba94c6a ("mm: do_wp_page() simplification"). Now, the NUMA balancing shouldn't actually be changing the writability of a page, and as such shouldn't matter for COW. But it appears it does. Suspicious. However, regardless of that, the condition for enabling NUMA faults in change_pte_range() is nonsensical. It uses "page_mapcount(page)" to decide if a COW page should be NUMA-protected or not, and that makes absolutely no sense. The number of mappings a page has is irrelevant: not only does GUP get a reference to a page as in Oded's case, but the other mappings migth be paged out and the only reference to them would be in the page count. Since we should never try to NUMA-balance a page that we can't move anyway due to other references, just fix the code to use 'page_count()'. Oded confirms that that fixes his issue. Now, this does imply that something in NUMA balancing ends up changing page protections (other than the obvious one of making the page inaccessible to get the NUMA faulting information). Otherwise the COW simplification wouldn't matter - since doing the GUP on the page would make sure it's writable. The cause of that permission change would be good to figure out too, since it clearly results in spurious COW events - but fixing the nonsensical test that just happened to work before is obviously the CorrectThing(tm) to do regardless.
CVE-2022-48795 1 Linux 1 Linux Kernel 2025-10-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: parisc: Fix data TLB miss in sba_unmap_sg Rolf Eike Beer reported the following bug: [1274934.746891] Bad Address (null pointer deref?): Code=15 (Data TLB miss fault) at addr 0000004140000018 [1274934.746891] CPU: 3 PID: 5549 Comm: cmake Not tainted 5.15.4-gentoo-parisc64 #4 [1274934.746891] Hardware name: 9000/785/C8000 [1274934.746891] [1274934.746891] YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI [1274934.746891] PSW: 00001000000001001111111000001110 Not tainted [1274934.746891] r00-03 000000ff0804fe0e 0000000040bc9bc0 00000000406760e4 0000004140000000 [1274934.746891] r04-07 0000000040b693c0 0000004140000000 000000004a2b08b0 0000000000000001 [1274934.746891] r08-11 0000000041f98810 0000000000000000 000000004a0a7000 0000000000000001 [1274934.746891] r12-15 0000000040bddbc0 0000000040c0cbc0 0000000040bddbc0 0000000040bddbc0 [1274934.746891] r16-19 0000000040bde3c0 0000000040bddbc0 0000000040bde3c0 0000000000000007 [1274934.746891] r20-23 0000000000000006 000000004a368950 0000000000000000 0000000000000001 [1274934.746891] r24-27 0000000000001fff 000000000800000e 000000004a1710f0 0000000040b693c0 [1274934.746891] r28-31 0000000000000001 0000000041f988b0 0000000041f98840 000000004a171118 [1274934.746891] sr00-03 00000000066e5800 0000000000000000 0000000000000000 00000000066e5800 [1274934.746891] sr04-07 0000000000000000 0000000000000000 0000000000000000 0000000000000000 [1274934.746891] [1274934.746891] IASQ: 0000000000000000 0000000000000000 IAOQ: 00000000406760e8 00000000406760ec [1274934.746891] IIR: 48780030 ISR: 0000000000000000 IOR: 0000004140000018 [1274934.746891] CPU: 3 CR30: 00000040e3a9c000 CR31: ffffffffffffffff [1274934.746891] ORIG_R28: 0000000040acdd58 [1274934.746891] IAOQ[0]: sba_unmap_sg+0xb0/0x118 [1274934.746891] IAOQ[1]: sba_unmap_sg+0xb4/0x118 [1274934.746891] RP(r2): sba_unmap_sg+0xac/0x118 [1274934.746891] Backtrace: [1274934.746891] [<00000000402740cc>] dma_unmap_sg_attrs+0x6c/0x70 [1274934.746891] [<000000004074d6bc>] scsi_dma_unmap+0x54/0x60 [1274934.746891] [<00000000407a3488>] mptscsih_io_done+0x150/0xd70 [1274934.746891] [<0000000040798600>] mpt_interrupt+0x168/0xa68 [1274934.746891] [<0000000040255a48>] __handle_irq_event_percpu+0xc8/0x278 [1274934.746891] [<0000000040255c34>] handle_irq_event_percpu+0x3c/0xd8 [1274934.746891] [<000000004025ecb4>] handle_percpu_irq+0xb4/0xf0 [1274934.746891] [<00000000402548e0>] generic_handle_irq+0x50/0x70 [1274934.746891] [<000000004019a254>] call_on_stack+0x18/0x24 [1274934.746891] [1274934.746891] Kernel panic - not syncing: Bad Address (null pointer deref?) The bug is caused by overrunning the sglist and incorrectly testing sg_dma_len(sglist) before nents. Normally this doesn't cause a crash, but in this case sglist crossed a page boundary. This occurs in the following code: while (sg_dma_len(sglist) && nents--) { The fix is simply to test nents first and move the decrement of nents into the loop.
CVE-2025-54286 2 Canonical, Linux 2 Lxd, Linux 2025-10-03 N/A
Cross-Site Request Forgery (CSRF) in LXD-UI in Canonical LXD versions >= 5.0 on Linux allows an attacker to create and start container instances without user consent via crafted HTML form submissions exploiting client certificate authentication.
CVE-2025-54288 2 Canonical, Linux 2 Lxd, Linux 2025-10-03 N/A
Information Spoofing in devLXD Server in Canonical LXD versions 4.0 and above on Linux container platforms allows attackers with root privileges within any container to impersonate other containers and obtain their metadata, configuration, and device information via spoofed process names in the command line.
CVE-2025-11020 3 Linux, Markany, Microsoft 3 Linux, Safepc Enterprise, Windows 2025-10-03 8.8 High
An attacker can obtain server information using Path Traversal vulnerability to conduct SQL Injection, which possibly exploits Unrestricted Upload of File with Dangerous Type vulnerability in MarkAny SafePC Enterprise on Windows, Linux.This issue affects SafePC Enterprise: V7.0.* (V7.0.YYYY.MM.DD) before V7.0.1, and V5.*.*.
CVE-2025-54290 2 Canonical, Linux 2 Lxd, Linux 2025-10-03 N/A
Information disclosure in image export API in Canonical LXD before 6.5 and 5.21.4 on Linux allows network attackers to determine project existence without authentication via crafted requests using wildcard fingerprints.
CVE-2025-54293 2 Canonical, Linux 2 Lxd, Linux 2025-10-03 N/A
Path Traversal in the log file retrieval function in Canonical LXD 5.0 LTS on Linux allows authenticated remote attackers to read arbitrary files on the host system via crafted log file names or symbolic links.
CVE-2025-34192 4 Apple, Linux, Printerlogic and 1 more 6 Macos, Linux Kernel, Vasion Print and 3 more 2025-10-02 9.8 Critical
Vasion Print (formerly PrinterLogic) Virtual Appliance Host versions prior to 22.0.893 and Application versions prior to 20.0.2140 (macOS/Linux client deployments) are built against OpenSSL 1.0.2h-fips (released May 2016), which has been end-of-life since 2019 and is no longer supported by the OpenSSL project. Continued use of this outdated cryptographic library exposes deployments to known vulnerabilities that are no longer patched, weakening the overall security posture. Affected daemons may emit deprecation warnings and rely on cryptographic components with unresolved security flaws, potentially enabling attackers to exploit weaknesses in TLS/SSL processing or cryptographic operations. This vulnerability has been identified by the vendor as: V-2023-021 — Out-of-Date OpenSSL Library.
CVE-2025-34191 4 Apple, Linux, Printerlogic and 1 more 6 Macos, Linux Kernel, Vasion Print and 3 more 2025-10-02 8.4 High
Vasion Print (formerly PrinterLogic) Virtual Appliance Host versions prior to 22.0.843 and Application prior to 20.0.1923 (macOS/Linux client deployments) contain an arbitrary file write vulnerability via the response file handling. When tasks produce output the service writes response data into files under /opt/PrinterInstallerClient/tmp/responses/ reusing the requested filename. The service follows symbolic links in the responses directory and writes as the service user (typically root), allowing a local, unprivileged user to cause the service to overwrite or create arbitrary files on the filesystem as root. This can be used to modify configuration files, replace or inject binaries or drivers, and otherwise achieve local privilege escalation and full system compromise. This vulnerability has been identified by the vendor as: V-2023-019 — Arbitrary File Write as Root.
CVE-2025-34189 4 Apple, Linux, Printerlogic and 1 more 6 Macos, Linux Kernel, Vasion Print and 3 more 2025-10-02 7.8 High
Vasion Print (formerly PrinterLogic) Virtual Appliance Host versions prior to 1.0.735 and Application versions prior to 20.0.1330 (macOS/Linux client deployments) contain a vulnerability in the local inter-process communication (IPC) mechanism. The software stores IPC request and response files inside /opt/PrinterInstallerClient/tmp with world-readable and world-writable permissions. Any local user can craft malicious request files that are processed by privileged daemons, leading to unauthorized actions being executed in other user sessions. This breaks user session isolation, potentially allowing local attackers to hijack sessions, perform unintended actions in the context of other users, and impact system integrity and availability. This vulnerability has been identified by the vendor as: V-2022-004 — Client Inter-process Security.
CVE-2025-34188 4 Apple, Linux, Printerlogic and 1 more 6 Macos, Linux Kernel, Vasion Print and 3 more 2025-10-02 7.8 High
Vasion Print (formerly PrinterLogic) Virtual Appliance Host versions prior to 1.0.735 and Application prior to 20.0.1330 (macOS/Linux client deployments) contain a vulnerability in the local logging mechanism. Authentication session tokens, including PHPSESSID, XSRF-TOKEN, and laravel_session, are stored in cleartext within world-readable log files. Any local user with access to the machine can extract these session tokens and use them to authenticate remotely to the SaaS environment, bypassing normal login credentials, potentially leading to unauthorized system access and exposure of sensitive information. This vulnerability has been identified by the vendor as: V-2022-008 — Secrets Leaked in Logs.
CVE-2025-39898 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: e1000e: fix heap overflow in e1000_set_eeprom Fix a possible heap overflow in e1000_set_eeprom function by adding input validation for the requested length of the change in the EEPROM. In addition, change the variable type from int to size_t for better code practices and rearrange declarations to RCT.
CVE-2022-50424 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921: resource leaks at mt7921_check_offload_capability() Fixed coverity issue with resource leaks at variable "fw" going out of scope leaks the storage it points to mt7921_check_offload_capability(). Addresses-Coverity-ID: 1527806 ("Resource leaks")
CVE-2023-53448 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fbdev: imxfb: Removed unneeded release_mem_region Remove unnecessary release_mem_region from the error path to prevent mem region from being released twice, which could avoid resource leak or other unexpected issues.
CVE-2022-50439 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ASoC: mediatek: mt8173: Enable IRQ when pdata is ready If the device does not come straight from reset, we might receive an IRQ before we are ready to handle it. [ 2.334737] Unable to handle kernel read from unreadable memory at virtual address 00000000000001e4 [ 2.522601] Call trace: [ 2.525040] regmap_read+0x1c/0x80 [ 2.528434] mt8173_afe_irq_handler+0x40/0xf0 ... [ 2.598921] start_kernel+0x338/0x42c
CVE-2023-53471 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu/gfx: disable gfx9 cp_ecc_error_irq only when enabling legacy gfx ras gfx9 cp_ecc_error_irq is only enabled when legacy gfx ras is assert. So in gfx_v9_0_hw_fini, interrupt disablement for cp_ecc_error_irq should be executed under such condition, otherwise, an amdgpu_irq_put calltrace will occur. [ 7283.170322] RIP: 0010:amdgpu_irq_put+0x45/0x70 [amdgpu] [ 7283.170964] RSP: 0018:ffff9a5fc3967d00 EFLAGS: 00010246 [ 7283.170967] RAX: ffff98d88afd3040 RBX: ffff98d89da20000 RCX: 0000000000000000 [ 7283.170969] RDX: 0000000000000000 RSI: ffff98d89da2bef8 RDI: ffff98d89da20000 [ 7283.170971] RBP: ffff98d89da20000 R08: ffff98d89da2ca18 R09: 0000000000000006 [ 7283.170973] R10: ffffd5764243c008 R11: 0000000000000000 R12: 0000000000001050 [ 7283.170975] R13: ffff98d89da38978 R14: ffffffff999ae15a R15: ffff98d880130105 [ 7283.170978] FS: 0000000000000000(0000) GS:ffff98d996f00000(0000) knlGS:0000000000000000 [ 7283.170981] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 7283.170983] CR2: 00000000f7a9d178 CR3: 00000001c42ea000 CR4: 00000000003506e0 [ 7283.170986] Call Trace: [ 7283.170988] <TASK> [ 7283.170989] gfx_v9_0_hw_fini+0x1c/0x6d0 [amdgpu] [ 7283.171655] amdgpu_device_ip_suspend_phase2+0x101/0x1a0 [amdgpu] [ 7283.172245] amdgpu_device_suspend+0x103/0x180 [amdgpu] [ 7283.172823] amdgpu_pmops_freeze+0x21/0x60 [amdgpu] [ 7283.173412] pci_pm_freeze+0x54/0xc0 [ 7283.173419] ? __pfx_pci_pm_freeze+0x10/0x10 [ 7283.173425] dpm_run_callback+0x98/0x200 [ 7283.173430] __device_suspend+0x164/0x5f0 v2: drop gfx11 as it's fixed in a different solution by retiring cp_ecc_irq funcs(Hawking)
CVE-2023-53478 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tracing/synthetic: Fix races on freeing last_cmd Currently, the "last_cmd" variable can be accessed by multiple processes asynchronously when multiple users manipulate synthetic_events node at the same time, it could lead to use-after-free or double-free. This patch add "lastcmd_mutex" to prevent "last_cmd" from being accessed asynchronously. ================================================================ It's easy to reproduce in the KASAN environment by running the two scripts below in different shells. script 1: while : do echo -n -e '\x88' > /sys/kernel/tracing/synthetic_events done script 2: while : do echo -n -e '\xb0' > /sys/kernel/tracing/synthetic_events done ================================================================ double-free scenario: process A process B ------------------- --------------- 1.kstrdup last_cmd 2.free last_cmd 3.free last_cmd(double-free) ================================================================ use-after-free scenario: process A process B ------------------- --------------- 1.kstrdup last_cmd 2.free last_cmd 3.tracing_log_err(use-after-free) ================================================================ Appendix 1. KASAN report double-free: BUG: KASAN: double-free in kfree+0xdc/0x1d4 Free of addr ***** by task sh/4879 Call trace: ... kfree+0xdc/0x1d4 create_or_delete_synth_event+0x60/0x1e8 trace_parse_run_command+0x2bc/0x4b8 synth_events_write+0x20/0x30 vfs_write+0x200/0x830 ... Allocated by task 4879: ... kstrdup+0x5c/0x98 create_or_delete_synth_event+0x6c/0x1e8 trace_parse_run_command+0x2bc/0x4b8 synth_events_write+0x20/0x30 vfs_write+0x200/0x830 ... Freed by task 5464: ... kfree+0xdc/0x1d4 create_or_delete_synth_event+0x60/0x1e8 trace_parse_run_command+0x2bc/0x4b8 synth_events_write+0x20/0x30 vfs_write+0x200/0x830 ... ================================================================ Appendix 2. KASAN report use-after-free: BUG: KASAN: use-after-free in strlen+0x5c/0x7c Read of size 1 at addr ***** by task sh/5483 sh: CPU: 7 PID: 5483 Comm: sh ... __asan_report_load1_noabort+0x34/0x44 strlen+0x5c/0x7c tracing_log_err+0x60/0x444 create_or_delete_synth_event+0xc4/0x204 trace_parse_run_command+0x2bc/0x4b8 synth_events_write+0x20/0x30 vfs_write+0x200/0x830 ... Allocated by task 5483: ... kstrdup+0x5c/0x98 create_or_delete_synth_event+0x80/0x204 trace_parse_run_command+0x2bc/0x4b8 synth_events_write+0x20/0x30 vfs_write+0x200/0x830 ... Freed by task 5480: ... kfree+0xdc/0x1d4 create_or_delete_synth_event+0x74/0x204 trace_parse_run_command+0x2bc/0x4b8 synth_events_write+0x20/0x30 vfs_write+0x200/0x830 ...
CVE-2023-53480 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: kobject: Add sanity check for kset->kobj.ktype in kset_register() When I register a kset in the following way: static struct kset my_kset; kobject_set_name(&my_kset.kobj, "my_kset"); ret = kset_register(&my_kset); A null pointer dereference exception is occurred: [ 4453.568337] Unable to handle kernel NULL pointer dereference at \ virtual address 0000000000000028 ... ... [ 4453.810361] Call trace: [ 4453.813062] kobject_get_ownership+0xc/0x34 [ 4453.817493] kobject_add_internal+0x98/0x274 [ 4453.822005] kset_register+0x5c/0xb4 [ 4453.825820] my_kobj_init+0x44/0x1000 [my_kset] ... ... Because I didn't initialize my_kset.kobj.ktype. According to the description in Documentation/core-api/kobject.rst: - A ktype is the type of object that embeds a kobject. Every structure that embeds a kobject needs a corresponding ktype. So add sanity check to make sure kset->kobj.ktype is not NULL.
CVE-2022-50425 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Fix copy_xstate_to_uabi() to copy init states correctly When an extended state component is not present in fpstate, but in init state, the function copies from init_fpstate via copy_feature(). But, dynamic states are not present in init_fpstate because of all-zeros init states. Then retrieving them from init_fpstate will explode like this: BUG: kernel NULL pointer dereference, address: 0000000000000000 ... RIP: 0010:memcpy_erms+0x6/0x10 ? __copy_xstate_to_uabi_buf+0x381/0x870 fpu_copy_guest_fpstate_to_uabi+0x28/0x80 kvm_arch_vcpu_ioctl+0x14c/0x1460 [kvm] ? __this_cpu_preempt_check+0x13/0x20 ? vmx_vcpu_put+0x2e/0x260 [kvm_intel] kvm_vcpu_ioctl+0xea/0x6b0 [kvm] ? kvm_vcpu_ioctl+0xea/0x6b0 [kvm] ? __fget_light+0xd4/0x130 __x64_sys_ioctl+0xe3/0x910 ? debug_smp_processor_id+0x17/0x20 ? fpregs_assert_state_consistent+0x27/0x50 do_syscall_64+0x3f/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd Adjust the 'mask' to zero out the userspace buffer for the features that are not available both from fpstate and from init_fpstate. The dynamic features depend on the compacted XSAVE format. Ensure it is enabled before reading XCOMP_BV in init_fpstate.
CVE-2022-50449 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: clk: samsung: Fix memory leak in _samsung_clk_register_pll() If clk_register() fails, @pll->rate_table may have allocated memory by kmemdup(), so it needs to be freed, otherwise will cause memory leak issue, this patch fixes it.