| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| DNG SDK versions 1.7.1 2410 and earlier are affected by an out-of-bounds write vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| An authorized user may disable the MongoDB server by issuing a query against a collection that contains an invalid compound wildcard index. |
| Improper input validation in IOMMU could allow a malicious hypervisor to reconfigure IOMMU registers resulting in loss of guest data integrity. |
| Frappe is a full-stack web application framework. Prior to 14.99.14 and 15.94.0, an attacker could craft a malicious signup URL for a frappe site which could lead to an open redirect (or reflected XSS, depending on the crafted payload) when a user signs up. This vulnerability is fixed in 14.99.14 and 15.94.0. |
| Out-of-bounds read in the firmware for some Intel(R) Converged Security and Management Engine (CSME) Firmware (FW) within Ring 0: Kernel may allow an information disclosure. System software adversary with a privileged user combined with a low complexity attack may enable data exposure. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (none) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Out-of-bounds read for some TDX Module before version tdx1.5 within Ring 0: Hypervisor may allow an information disclosure. Software side channel adversary with a privileged user combined with a high complexity attack may enable data exposure. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (none) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Improper access control in secure encrypted virtualization (SEV) could allow a privileged attacker to write to the reverse map page (RMP) during secure nested paging (SNP) initialization, potentially resulting in a loss of guest memory confidentiality and integrity. |
| Insufficient input parameter sanitization in AMD Secure Processor (ASP) Boot Loader (legacy recovery mode only) could allow an attacker to write out-of-bounds to corrupt Secure DRAM potentially resulting in denial of service. |
| Improper authorization in the Intel(R) Quick Assist Technology for some Intel(R) Platforms within Ring 0: Kernel may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present with special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Incorrect default permissions for some Intel(R) Battery Life Diagnostic Tool within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Race condition for some TDX Module before version tdx1.5 within Ring 0: Hypervisor may allow a denial of service. Authorized adversary with a privileged user combined with a high complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (low) impacts. |
| Out-of-bounds read in the firmware for some 100GbE Intel(R) Ethernet Network Adapter E810 before version cvl fw 1.7.6, cpk 1.3.7 within Ring 0: Bare Metal OS may allow a denial of service. Network adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via network access when attack requirements are present with special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Out-of-bounds write in the firmware for the Intel(R) AMT and Intel(R) Standard Manageability within Ring 3: User Applications may allow a denial of service. Network adversary with an unauthenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via network access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (low) impacts. |
| Uncontrolled search path for some AI Playground before version 2.6.1 beta within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Use of uninitialized variable for some TDX Module before version tdx1.5 within Ring 0: Hypervisor may allow an information disclosure. Authorized adversary with a privileged user combined with a high complexity attack may enable data exposure. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (none) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Improper conditions check in some firmware for some Intel(R) NPU Drivers within Ring 1: Device Drivers may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Improper conditions check in some firmware for some Intel(R) Graphics Drivers and Intel LTS kernels within Ring 1: Device Drivers may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are present with special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (low) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Improper conditions check in some firmware for some Intel(R) NPU Drivers within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a low complexity attack may enable data corruption. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (low) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Improper conditions check in some firmware for some Intel(R) NPU Drivers within Ring 1: Device Drivers may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Incorrect default permissions for some Intel(R) Chipset Software before version 10.1.20266.8668 or later. within Ring 3: User Applications may allow an escalation of privilege. System software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |