Search

Search Results (314792 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-10139 1 Wordpress 1 Wordpress 2025-10-20 6.4 Medium
The WP BookWidgets plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'bw_link' shortcode in all versions up to, and including, 0.9 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
CVE-2025-8561 1 Wordpress 1 Wordpress 2025-10-20 6.4 Medium
The Ova Advent plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's shortcodes in all versions up to, and including, 1.1.7 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
CVE-2025-39974 1 Linux 1 Linux Kernel 2025-10-20 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tracing/osnoise: Fix slab-out-of-bounds in _parse_integer_limit() When config osnoise cpus by write() syscall, the following KASAN splat may be observed: BUG: KASAN: slab-out-of-bounds in _parse_integer_limit+0x103/0x130 Read of size 1 at addr ffff88810121e3a1 by task test/447 CPU: 1 UID: 0 PID: 447 Comm: test Not tainted 6.17.0-rc6-dirty #288 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x55/0x70 print_report+0xcb/0x610 kasan_report+0xb8/0xf0 _parse_integer_limit+0x103/0x130 bitmap_parselist+0x16d/0x6f0 osnoise_cpus_write+0x116/0x2d0 vfs_write+0x21e/0xcc0 ksys_write+0xee/0x1c0 do_syscall_64+0xa8/0x2a0 entry_SYSCALL_64_after_hwframe+0x77/0x7f </TASK> This issue can be reproduced by below code: const char *cpulist = "1"; int fd=open("/sys/kernel/debug/tracing/osnoise/cpus", O_WRONLY); write(fd, cpulist, strlen(cpulist)); Function bitmap_parselist() was called to parse cpulist, it require that the parameter 'buf' must be terminated with a '\0' or '\n'. Fix this issue by adding a '\0' to 'buf' in osnoise_cpus_write().
CVE-2025-11365 1 Wordpress 1 Wordpress 2025-10-20 6.5 Medium
The WP Google Map Plugin plugin for WordPress is vulnerable to blind SQL Injection via the 'id' parameter of the 'google_map' shortcode in all versions up to, and including, 1.0 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Contributor-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database.
CVE-2025-39985 1 Linux 1 Linux Kernel 2025-10-20 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: can: mcba_usb: populate ndo_change_mtu() to prevent buffer overflow Sending an PF_PACKET allows to bypass the CAN framework logic and to directly reach the xmit() function of a CAN driver. The only check which is performed by the PF_PACKET framework is to make sure that skb->len fits the interface's MTU. Unfortunately, because the mcba_usb driver does not populate its net_device_ops->ndo_change_mtu(), it is possible for an attacker to configure an invalid MTU by doing, for example: $ ip link set can0 mtu 9999 After doing so, the attacker could open a PF_PACKET socket using the ETH_P_CANXL protocol: socket(PF_PACKET, SOCK_RAW, htons(ETH_P_CANXL)) to inject a malicious CAN XL frames. For example: struct canxl_frame frame = { .flags = 0xff, .len = 2048, }; The CAN drivers' xmit() function are calling can_dev_dropped_skb() to check that the skb is valid, unfortunately under above conditions, the malicious packet is able to go through can_dev_dropped_skb() checks: 1. the skb->protocol is set to ETH_P_CANXL which is valid (the function does not check the actual device capabilities). 2. the length is a valid CAN XL length. And so, mcba_usb_start_xmit() receives a CAN XL frame which it is not able to correctly handle and will thus misinterpret it as a CAN frame. This can result in a buffer overflow. The driver will consume cf->len as-is with no further checks on these lines: usb_msg.dlc = cf->len; memcpy(usb_msg.data, cf->data, usb_msg.dlc); Here, cf->len corresponds to the flags field of the CAN XL frame. In our previous example, we set canxl_frame->flags to 0xff. Because the maximum expected length is 8, a buffer overflow of 247 bytes occurs! Populate net_device_ops->ndo_change_mtu() to ensure that the interface's MTU can not be set to anything bigger than CAN_MTU. By fixing the root cause, this prevents the buffer overflow.
CVE-2025-11177 1 Wordpress 1 Wordpress 2025-10-20 7.5 High
The External Login plugin for WordPress is vulnerable to SQL Injection via the 'log' parameter in all versions up to, and including, 1.11.2 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for unauthenticated attackers to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database when a PostgreSQL or MSSQL database is configured as the external authentication database.
CVE-2025-10682 1 Wordpress 1 Wordpress 2025-10-20 6.5 Medium
The TARIFFUXX plugin for WordPress is vulnerable to SQL Injection in versions up to, and including, 1.4. This is due to insufficient neutralization of user-supplied input used directly in SQL queries. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject additional SQL into queries and extract sensitive information from the database via a crafted id attribute in the 'tariffuxx_configurator' shortcode.
CVE-2025-10135 1 Wordpress 1 Wordpress 2025-10-20 6.4 Medium
The WP ViewSTL plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'viewstl' shortcode in all versions up to, and including, 1.0 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
CVE-2025-10133 1 Wordpress 1 Wordpress 2025-10-20 6.4 Medium
The URLYar URL Shortner plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'urlyar_shortlink' shortcode in all versions up to, and including, 1.1.0 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
CVE-2025-31702 1 Dahua 2 Ipc, Sd 2025-10-20 6.8 Medium
A vulnerability exists in certain Dahua embedded products. Third-party malicious attacker with obtained normal user credentials could exploit the vulnerability to access certain data which are restricted to admin privileges, such as system-sensitive files through specific HTTP request. This may cause tampering with admin password, leading to privilege escalation. Systems with only admin account are not affected.
CVE-2025-39978 1 Linux 1 Linux Kernel 2025-10-20 7.0 High
In the Linux kernel, the following vulnerability has been resolved: octeontx2-pf: Fix potential use after free in otx2_tc_add_flow() This code calls kfree_rcu(new_node, rcu) and then dereferences "new_node" and then dereferences it on the next line. Two lines later, we take a mutex so I don't think this is an RCU safe region. Re-order it to do the dereferences before queuing up the free.
CVE-2025-11692 1 Wordpress 1 Wordpress 2025-10-20 5.3 Medium
The Zip Attachments plugin for WordPress is vulnerable to unauthorized loss of data due to a missing authorization and capability checks on the download.php file in all versions up to, and including, 1.6. This makes it possible for unauthenticated attackers to delete arbitrary files from the current wp_upload_dir directory.
CVE-2025-39995 1 Linux 1 Linux Kernel 2025-10-20 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: i2c: tc358743: Fix use-after-free bugs caused by orphan timer in probe The state->timer is a cyclic timer that schedules work_i2c_poll and delayed_work_enable_hotplug, while rearming itself. Using timer_delete() fails to guarantee the timer isn't still running when destroyed, similarly cancel_delayed_work() cannot ensure delayed_work_enable_hotplug has terminated if already executing. During probe failure after timer initialization, these may continue running as orphans and reference the already-freed tc358743_state object through tc358743_irq_poll_timer. The following is the trace captured by KASAN. BUG: KASAN: slab-use-after-free in __run_timer_base.part.0+0x7d7/0x8c0 Write of size 8 at addr ffff88800ded83c8 by task swapper/1/0 ... Call Trace: <IRQ> dump_stack_lvl+0x55/0x70 print_report+0xcf/0x610 ? __pfx_sched_balance_find_src_group+0x10/0x10 ? __run_timer_base.part.0+0x7d7/0x8c0 kasan_report+0xb8/0xf0 ? __run_timer_base.part.0+0x7d7/0x8c0 __run_timer_base.part.0+0x7d7/0x8c0 ? rcu_sched_clock_irq+0xb06/0x27d0 ? __pfx___run_timer_base.part.0+0x10/0x10 ? try_to_wake_up+0xb15/0x1960 ? tmigr_update_events+0x280/0x740 ? _raw_spin_lock_irq+0x80/0xe0 ? __pfx__raw_spin_lock_irq+0x10/0x10 tmigr_handle_remote_up+0x603/0x7e0 ? __pfx_tmigr_handle_remote_up+0x10/0x10 ? sched_balance_trigger+0x98/0x9f0 ? sched_tick+0x221/0x5a0 ? _raw_spin_lock_irq+0x80/0xe0 ? __pfx__raw_spin_lock_irq+0x10/0x10 ? tick_nohz_handler+0x339/0x440 ? __pfx_tmigr_handle_remote_up+0x10/0x10 __walk_groups.isra.0+0x42/0x150 tmigr_handle_remote+0x1f4/0x2e0 ? __pfx_tmigr_handle_remote+0x10/0x10 ? ktime_get+0x60/0x140 ? lapic_next_event+0x11/0x20 ? clockevents_program_event+0x1d4/0x2a0 ? hrtimer_interrupt+0x322/0x780 handle_softirqs+0x16a/0x550 irq_exit_rcu+0xaf/0xe0 sysvec_apic_timer_interrupt+0x70/0x80 </IRQ> ... Allocated by task 141: kasan_save_stack+0x24/0x50 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x7f/0x90 __kmalloc_node_track_caller_noprof+0x198/0x430 devm_kmalloc+0x7b/0x1e0 tc358743_probe+0xb7/0x610 i2c_device_probe+0x51d/0x880 really_probe+0x1ca/0x5c0 __driver_probe_device+0x248/0x310 driver_probe_device+0x44/0x120 __device_attach_driver+0x174/0x220 bus_for_each_drv+0x100/0x190 __device_attach+0x206/0x370 bus_probe_device+0x123/0x170 device_add+0xd25/0x1470 i2c_new_client_device+0x7a0/0xcd0 do_one_initcall+0x89/0x300 do_init_module+0x29d/0x7f0 load_module+0x4f48/0x69e0 init_module_from_file+0xe4/0x150 idempotent_init_module+0x320/0x670 __x64_sys_finit_module+0xbd/0x120 do_syscall_64+0xac/0x280 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 141: kasan_save_stack+0x24/0x50 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3a/0x60 __kasan_slab_free+0x3f/0x50 kfree+0x137/0x370 release_nodes+0xa4/0x100 devres_release_group+0x1b2/0x380 i2c_device_probe+0x694/0x880 really_probe+0x1ca/0x5c0 __driver_probe_device+0x248/0x310 driver_probe_device+0x44/0x120 __device_attach_driver+0x174/0x220 bus_for_each_drv+0x100/0x190 __device_attach+0x206/0x370 bus_probe_device+0x123/0x170 device_add+0xd25/0x1470 i2c_new_client_device+0x7a0/0xcd0 do_one_initcall+0x89/0x300 do_init_module+0x29d/0x7f0 load_module+0x4f48/0x69e0 init_module_from_file+0xe4/0x150 idempotent_init_module+0x320/0x670 __x64_sys_finit_module+0xbd/0x120 do_syscall_64+0xac/0x280 entry_SYSCALL_64_after_hwframe+0x77/0x7f ... Replace timer_delete() with timer_delete_sync() and cancel_delayed_work() with cancel_delayed_work_sync() to ensure proper termination of timer and work items before resource cleanup. This bug was initially identified through static analysis. For reproduction and testing, I created a functional emulation of the tc358743 device via a kernel module and introduced faults through the debugfs interface.
CVE-2025-39997 1 Linux 1 Linux Kernel 2025-10-20 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: fix race condition to UAF in snd_usbmidi_free The previous commit 0718a78f6a9f ("ALSA: usb-audio: Kill timer properly at removal") patched a UAF issue caused by the error timer. However, because the error timer kill added in this patch occurs after the endpoint delete, a race condition to UAF still occurs, albeit rarely. Additionally, since kill-cleanup for urb is also missing, freed memory can be accessed in interrupt context related to urb, which can cause UAF. Therefore, to prevent this, error timer and urb must be killed before freeing the heap memory.
CVE-2025-39973 1 Linux 1 Linux Kernel 2025-10-20 7.0 High
In the Linux kernel, the following vulnerability has been resolved: i40e: add validation for ring_len param The `ring_len` parameter provided by the virtual function (VF) is assigned directly to the hardware memory context (HMC) without any validation. To address this, introduce an upper boundary check for both Tx and Rx queue lengths. The maximum number of descriptors supported by the hardware is 8k-32. Additionally, enforce alignment constraints: Tx rings must be a multiple of 8, and Rx rings must be a multiple of 32.
CVE-2025-39969 1 Linux 1 Linux Kernel 2025-10-20 7.0 High
In the Linux kernel, the following vulnerability has been resolved: i40e: fix validation of VF state in get resources VF state I40E_VF_STATE_ACTIVE is not the only state in which VF is actually active so it should not be used to determine if a VF is allowed to obtain resources. Use I40E_VF_STATE_RESOURCES_LOADED that is set only in i40e_vc_get_vf_resources_msg() and cleared during reset.
CVE-2025-11196 1 Wordpress 1 Wordpress 2025-10-20 4.3 Medium
The External Login plugin for WordPress is vulnerable to sensitive information exposure in all versions up to, and including, 1.11.2 due to the 'exlog_test_connection' AJAX action lacking capability checks or nonce validation. This makes it possible for authenticated attackers, with subscriber-level access and above, to query the configured external database and retrieve truncated usernames, email addresses, and password hashes via the diagnostic test results view.
CVE-2025-11501 1 Wordpress 1 Wordpress 2025-10-20 7.5 High
The Dynamically Display Posts plugin for WordPress is vulnerable to SQL Injection via the 'tax_query' parameter in all versions up to, and including, 1.1 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for unauthenticated attackers to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database.
CVE-2025-10310 1 Wordpress 1 Wordpress 2025-10-20 4.9 Medium
The Rich Snippet Site Report plugin for WordPress is vulnerable to SQL Injection via the 'last' parameter in all versions up to, and including, 2.0.0105 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for unauthenticated attackers to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. This can also be exploited via CSRF.
CVE-2025-39966 1 Linux 1 Linux Kernel 2025-10-20 7.0 High
In the Linux kernel, the following vulnerability has been resolved: iommufd: Fix race during abort for file descriptors fput() doesn't actually call file_operations release() synchronously, it puts the file on a work queue and it will be released eventually. This is normally fine, except for iommufd the file and the iommufd_object are tied to gether. The file has the object as it's private_data and holds a users refcount, while the object is expected to remain alive as long as the file is. When the allocation of a new object aborts before installing the file it will fput() the file and then go on to immediately kfree() the obj. This causes a UAF once the workqueue completes the fput() and tries to decrement the users refcount. Fix this by putting the core code in charge of the file lifetime, and call __fput_sync() during abort to ensure that release() is called before kfree. __fput_sync() is a bit too tricky to open code in all the object implementations. Instead the objects tell the core code where the file pointer is and the core will take care of the life cycle. If the object is successfully allocated then the file will hold a users refcount and the iommufd_object cannot be destroyed. It is worth noting that close(); ioctl(IOMMU_DESTROY); doesn't have an issue because close() is already using a synchronous version of fput(). The UAF looks like this: BUG: KASAN: slab-use-after-free in iommufd_eventq_fops_release+0x45/0xc0 drivers/iommu/iommufd/eventq.c:376 Write of size 4 at addr ffff888059c97804 by task syz.0.46/6164 CPU: 0 UID: 0 PID: 6164 Comm: syz.0.46 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/18/2025 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xcd/0x630 mm/kasan/report.c:482 kasan_report+0xe0/0x110 mm/kasan/report.c:595 check_region_inline mm/kasan/generic.c:183 [inline] kasan_check_range+0x100/0x1b0 mm/kasan/generic.c:189 instrument_atomic_read_write include/linux/instrumented.h:96 [inline] atomic_fetch_sub_release include/linux/atomic/atomic-instrumented.h:400 [inline] __refcount_dec include/linux/refcount.h:455 [inline] refcount_dec include/linux/refcount.h:476 [inline] iommufd_eventq_fops_release+0x45/0xc0 drivers/iommu/iommufd/eventq.c:376 __fput+0x402/0xb70 fs/file_table.c:468 task_work_run+0x14d/0x240 kernel/task_work.c:227 resume_user_mode_work include/linux/resume_user_mode.h:50 [inline] exit_to_user_mode_loop+0xeb/0x110 kernel/entry/common.c:43 exit_to_user_mode_prepare include/linux/irq-entry-common.h:225 [inline] syscall_exit_to_user_mode_work include/linux/entry-common.h:175 [inline] syscall_exit_to_user_mode include/linux/entry-common.h:210 [inline] do_syscall_64+0x41c/0x4c0 arch/x86/entry/syscall_64.c:100 entry_SYSCALL_64_after_hwframe+0x77/0x7f