| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: Fix UAF in ieee80211_scan_rx()
ieee80211_scan_rx() tries to access scan_req->flags after a
null check, but a UAF is observed when the scan is completed
and __ieee80211_scan_completed() executes, which then calls
cfg80211_scan_done() leading to the freeing of scan_req.
Since scan_req is rcu_dereference()'d, prevent the racing in
__ieee80211_scan_completed() by ensuring that from mac80211's
POV it is no longer accessed from an RCU read critical section
before we call cfg80211_scan_done(). |
| In the Linux kernel, the following vulnerability has been resolved:
alloc_tag: allocate percpu counters for module tags dynamically
When a module gets unloaded it checks whether any of its tags are still in
use and if so, we keep the memory containing module's allocation tags
alive until all tags are unused. However percpu counters referenced by
the tags are freed by free_module(). This will lead to UAF if the memory
allocated by a module is accessed after module was unloaded.
To fix this we allocate percpu counters for module allocation tags
dynamically and we keep it alive for tags which are still in use after
module unloading. This also removes the requirement of a larger
PERCPU_MODULE_RESERVE when memory allocation profiling is enabled because
percpu memory for counters does not need to be reserved anymore. |
| In the Linux kernel, the following vulnerability has been resolved:
binder: fix UAF of ref->proc caused by race condition
A transaction of type BINDER_TYPE_WEAK_HANDLE can fail to increment the
reference for a node. In this case, the target proc normally releases
the failed reference upon close as expected. However, if the target is
dying in parallel the call will race with binder_deferred_release(), so
the target could have released all of its references by now leaving the
cleanup of the new failed reference unhandled.
The transaction then ends and the target proc gets released making the
ref->proc now a dangling pointer. Later on, ref->node is closed and we
attempt to take spin_lock(&ref->proc->inner_lock), which leads to the
use-after-free bug reported below. Let's fix this by cleaning up the
failed reference on the spot instead of relying on the target to do so.
==================================================================
BUG: KASAN: use-after-free in _raw_spin_lock+0xa8/0x150
Write of size 4 at addr ffff5ca207094238 by task kworker/1:0/590
CPU: 1 PID: 590 Comm: kworker/1:0 Not tainted 5.19.0-rc8 #10
Hardware name: linux,dummy-virt (DT)
Workqueue: events binder_deferred_func
Call trace:
dump_backtrace.part.0+0x1d0/0x1e0
show_stack+0x18/0x70
dump_stack_lvl+0x68/0x84
print_report+0x2e4/0x61c
kasan_report+0xa4/0x110
kasan_check_range+0xfc/0x1a4
__kasan_check_write+0x3c/0x50
_raw_spin_lock+0xa8/0x150
binder_deferred_func+0x5e0/0x9b0
process_one_work+0x38c/0x5f0
worker_thread+0x9c/0x694
kthread+0x188/0x190
ret_from_fork+0x10/0x20 |
| In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_router: Fix use-after-free when deleting GRE net devices
The driver only offloads neighbors that are constructed on top of net
devices registered by it or their uppers (which are all Ethernet). The
device supports GRE encapsulation and decapsulation of forwarded
traffic, but the driver will not offload dummy neighbors constructed on
top of GRE net devices as they are not uppers of its net devices:
# ip link add name gre1 up type gre tos inherit local 192.0.2.1 remote 198.51.100.1
# ip neigh add 0.0.0.0 lladdr 0.0.0.0 nud noarp dev gre1
$ ip neigh show dev gre1 nud noarp
0.0.0.0 lladdr 0.0.0.0 NOARP
(Note that the neighbor is not marked with 'offload')
When the driver is reloaded and the existing configuration is replayed,
the driver does not perform the same check regarding existing neighbors
and offloads the previously added one:
# devlink dev reload pci/0000:01:00.0
$ ip neigh show dev gre1 nud noarp
0.0.0.0 lladdr 0.0.0.0 offload NOARP
If the neighbor is later deleted, the driver will ignore the
notification (given the GRE net device is not its upper) and will
therefore keep referencing freed memory, resulting in a use-after-free
[1] when the net device is deleted:
# ip neigh del 0.0.0.0 lladdr 0.0.0.0 dev gre1
# ip link del dev gre1
Fix by skipping neighbor replay if the net device for which the replay
is performed is not our upper.
[1]
BUG: KASAN: slab-use-after-free in mlxsw_sp_neigh_entry_update+0x1ea/0x200
Read of size 8 at addr ffff888155b0e420 by task ip/2282
[...]
Call Trace:
<TASK>
dump_stack_lvl+0x6f/0xa0
print_address_description.constprop.0+0x6f/0x350
print_report+0x108/0x205
kasan_report+0xdf/0x110
mlxsw_sp_neigh_entry_update+0x1ea/0x200
mlxsw_sp_router_rif_gone_sync+0x2a8/0x440
mlxsw_sp_rif_destroy+0x1e9/0x750
mlxsw_sp_netdevice_ipip_ol_event+0x3c9/0xdc0
mlxsw_sp_router_netdevice_event+0x3ac/0x15e0
notifier_call_chain+0xca/0x150
call_netdevice_notifiers_info+0x7f/0x100
unregister_netdevice_many_notify+0xc8c/0x1d90
rtnl_dellink+0x34e/0xa50
rtnetlink_rcv_msg+0x6fb/0xb70
netlink_rcv_skb+0x131/0x360
netlink_unicast+0x426/0x710
netlink_sendmsg+0x75a/0xc20
__sock_sendmsg+0xc1/0x150
____sys_sendmsg+0x5aa/0x7b0
___sys_sendmsg+0xfc/0x180
__sys_sendmsg+0x121/0x1b0
do_syscall_64+0xbb/0x1d0
entry_SYSCALL_64_after_hwframe+0x4b/0x53 |
| In the Linux kernel, the following vulnerability has been resolved:
firmware_loader: Fix use-after-free during unregister
In the following code within firmware_upload_unregister(), the call to
device_unregister() could result in the dev_release function freeing the
fw_upload_priv structure before it is dereferenced for the call to
module_put(). This bug was found by the kernel test robot using
CONFIG_KASAN while running the firmware selftests.
device_unregister(&fw_sysfs->dev);
module_put(fw_upload_priv->module);
The problem is fixed by copying fw_upload_priv->module to a local variable
for use when calling device_unregister(). |
| In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: Fix use-after-free Read in usb_udc_uevent()
The syzbot fuzzer found a race between uevent callbacks and gadget
driver unregistration that can cause a use-after-free bug:
---------------------------------------------------------------
BUG: KASAN: use-after-free in usb_udc_uevent+0x11f/0x130
drivers/usb/gadget/udc/core.c:1732
Read of size 8 at addr ffff888078ce2050 by task udevd/2968
CPU: 1 PID: 2968 Comm: udevd Not tainted 5.19.0-rc4-next-20220628-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google
06/29/2022
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:317 [inline]
print_report.cold+0x2ba/0x719 mm/kasan/report.c:433
kasan_report+0xbe/0x1f0 mm/kasan/report.c:495
usb_udc_uevent+0x11f/0x130 drivers/usb/gadget/udc/core.c:1732
dev_uevent+0x290/0x770 drivers/base/core.c:2424
---------------------------------------------------------------
The bug occurs because usb_udc_uevent() dereferences udc->driver but
does so without acquiring the udc_lock mutex, which protects this
field. If the gadget driver is unbound from the udc concurrently with
uevent processing, the driver structure may be accessed after it has
been deallocated.
To prevent the race, we make sure that the routine holds the mutex
around the racing accesses. |
| In the Linux kernel, the following vulnerability has been resolved:
writeback: avoid use-after-free after removing device
When a disk is removed, bdi_unregister gets called to stop further
writeback and wait for associated delayed work to complete. However,
wb_inode_writeback_end() may schedule bandwidth estimation dwork after
this has completed, which can result in the timer attempting to access the
just freed bdi_writeback.
Fix this by checking if the bdi_writeback is alive, similar to when
scheduling writeback work.
Since this requires wb->work_lock, and wb_inode_writeback_end() may get
called from interrupt, switch wb->work_lock to an irqsafe lock. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix use-after-free of encap entry in neigh update handler
Function mlx5e_rep_neigh_update() wasn't updated to accommodate rtnl lock
removal from TC filter update path and properly handle concurrent encap
entry insertion/deletion which can lead to following use-after-free:
[23827.464923] ==================================================================
[23827.469446] BUG: KASAN: use-after-free in mlx5e_encap_take+0x72/0x140 [mlx5_core]
[23827.470971] Read of size 4 at addr ffff8881d132228c by task kworker/u20:6/21635
[23827.472251]
[23827.472615] CPU: 9 PID: 21635 Comm: kworker/u20:6 Not tainted 5.13.0-rc3+ #5
[23827.473788] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[23827.475639] Workqueue: mlx5e mlx5e_rep_neigh_update [mlx5_core]
[23827.476731] Call Trace:
[23827.477260] dump_stack+0xbb/0x107
[23827.477906] print_address_description.constprop.0+0x18/0x140
[23827.478896] ? mlx5e_encap_take+0x72/0x140 [mlx5_core]
[23827.479879] ? mlx5e_encap_take+0x72/0x140 [mlx5_core]
[23827.480905] kasan_report.cold+0x7c/0xd8
[23827.481701] ? mlx5e_encap_take+0x72/0x140 [mlx5_core]
[23827.482744] kasan_check_range+0x145/0x1a0
[23827.493112] mlx5e_encap_take+0x72/0x140 [mlx5_core]
[23827.494054] ? mlx5e_tc_tun_encap_info_equal_generic+0x140/0x140 [mlx5_core]
[23827.495296] mlx5e_rep_neigh_update+0x41e/0x5e0 [mlx5_core]
[23827.496338] ? mlx5e_rep_neigh_entry_release+0xb80/0xb80 [mlx5_core]
[23827.497486] ? read_word_at_a_time+0xe/0x20
[23827.498250] ? strscpy+0xa0/0x2a0
[23827.498889] process_one_work+0x8ac/0x14e0
[23827.499638] ? lockdep_hardirqs_on_prepare+0x400/0x400
[23827.500537] ? pwq_dec_nr_in_flight+0x2c0/0x2c0
[23827.501359] ? rwlock_bug.part.0+0x90/0x90
[23827.502116] worker_thread+0x53b/0x1220
[23827.502831] ? process_one_work+0x14e0/0x14e0
[23827.503627] kthread+0x328/0x3f0
[23827.504254] ? _raw_spin_unlock_irq+0x24/0x40
[23827.505065] ? __kthread_bind_mask+0x90/0x90
[23827.505912] ret_from_fork+0x1f/0x30
[23827.506621]
[23827.506987] Allocated by task 28248:
[23827.507694] kasan_save_stack+0x1b/0x40
[23827.508476] __kasan_kmalloc+0x7c/0x90
[23827.509197] mlx5e_attach_encap+0xde1/0x1d40 [mlx5_core]
[23827.510194] mlx5e_tc_add_fdb_flow+0x397/0xc40 [mlx5_core]
[23827.511218] __mlx5e_add_fdb_flow+0x519/0xb30 [mlx5_core]
[23827.512234] mlx5e_configure_flower+0x191c/0x4870 [mlx5_core]
[23827.513298] tc_setup_cb_add+0x1d5/0x420
[23827.514023] fl_hw_replace_filter+0x382/0x6a0 [cls_flower]
[23827.514975] fl_change+0x2ceb/0x4a51 [cls_flower]
[23827.515821] tc_new_tfilter+0x89a/0x2070
[23827.516548] rtnetlink_rcv_msg+0x644/0x8c0
[23827.517300] netlink_rcv_skb+0x11d/0x340
[23827.518021] netlink_unicast+0x42b/0x700
[23827.518742] netlink_sendmsg+0x743/0xc20
[23827.519467] sock_sendmsg+0xb2/0xe0
[23827.520131] ____sys_sendmsg+0x590/0x770
[23827.520851] ___sys_sendmsg+0xd8/0x160
[23827.521552] __sys_sendmsg+0xb7/0x140
[23827.522238] do_syscall_64+0x3a/0x70
[23827.522907] entry_SYSCALL_64_after_hwframe+0x44/0xae
[23827.523797]
[23827.524163] Freed by task 25948:
[23827.524780] kasan_save_stack+0x1b/0x40
[23827.525488] kasan_set_track+0x1c/0x30
[23827.526187] kasan_set_free_info+0x20/0x30
[23827.526968] __kasan_slab_free+0xed/0x130
[23827.527709] slab_free_freelist_hook+0xcf/0x1d0
[23827.528528] kmem_cache_free_bulk+0x33a/0x6e0
[23827.529317] kfree_rcu_work+0x55f/0xb70
[23827.530024] process_one_work+0x8ac/0x14e0
[23827.530770] worker_thread+0x53b/0x1220
[23827.531480] kthread+0x328/0x3f0
[23827.532114] ret_from_fork+0x1f/0x30
[23827.532785]
[23827.533147] Last potentially related work creation:
[23827.534007] kasan_save_stack+0x1b/0x40
[23827.534710] kasan_record_aux_stack+0xab/0xc0
[23827.535492] kvfree_call_rcu+0x31/0x7b0
[23827.536206] mlx5e_tc_del
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/core: Fix "KASAN: slab-use-after-free Read in ib_register_device" problem
Call Trace:
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xc3/0x670 mm/kasan/report.c:521
kasan_report+0xe0/0x110 mm/kasan/report.c:634
strlen+0x93/0xa0 lib/string.c:420
__fortify_strlen include/linux/fortify-string.h:268 [inline]
get_kobj_path_length lib/kobject.c:118 [inline]
kobject_get_path+0x3f/0x2a0 lib/kobject.c:158
kobject_uevent_env+0x289/0x1870 lib/kobject_uevent.c:545
ib_register_device drivers/infiniband/core/device.c:1472 [inline]
ib_register_device+0x8cf/0xe00 drivers/infiniband/core/device.c:1393
rxe_register_device+0x275/0x320 drivers/infiniband/sw/rxe/rxe_verbs.c:1552
rxe_net_add+0x8e/0xe0 drivers/infiniband/sw/rxe/rxe_net.c:550
rxe_newlink+0x70/0x190 drivers/infiniband/sw/rxe/rxe.c:225
nldev_newlink+0x3a3/0x680 drivers/infiniband/core/nldev.c:1796
rdma_nl_rcv_msg+0x387/0x6e0 drivers/infiniband/core/netlink.c:195
rdma_nl_rcv_skb.constprop.0.isra.0+0x2e5/0x450
netlink_unicast_kernel net/netlink/af_netlink.c:1313 [inline]
netlink_unicast+0x53a/0x7f0 net/netlink/af_netlink.c:1339
netlink_sendmsg+0x8d1/0xdd0 net/netlink/af_netlink.c:1883
sock_sendmsg_nosec net/socket.c:712 [inline]
__sock_sendmsg net/socket.c:727 [inline]
____sys_sendmsg+0xa95/0xc70 net/socket.c:2566
___sys_sendmsg+0x134/0x1d0 net/socket.c:2620
__sys_sendmsg+0x16d/0x220 net/socket.c:2652
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0x260 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
This problem is similar to the problem that the
commit 1d6a9e7449e2 ("RDMA/core: Fix use-after-free when rename device name")
fixes.
The root cause is: the function ib_device_rename() renames the name with
lock. But in the function kobject_uevent(), this name is accessed without
lock protection at the same time.
The solution is to add the lock protection when this name is accessed in
the function kobject_uevent(). |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: Intel: hda: Fix UAF when reloading module
hda_generic_machine_select() appends -idisp to the tplg filename by
allocating a new string with devm_kasprintf(), then stores the string
right back into the global variable snd_soc_acpi_intel_hda_machines.
When the module is unloaded, this memory is freed, resulting in a global
variable pointing to freed memory. Reloading the module then triggers
a use-after-free:
BUG: KFENCE: use-after-free read in string+0x48/0xe0
Use-after-free read at 0x00000000967e0109 (in kfence-#99):
string+0x48/0xe0
vsnprintf+0x329/0x6e0
devm_kvasprintf+0x54/0xb0
devm_kasprintf+0x58/0x80
hda_machine_select.cold+0x198/0x17a2 [snd_sof_intel_hda_generic]
sof_probe_work+0x7f/0x600 [snd_sof]
process_one_work+0x17b/0x330
worker_thread+0x2ce/0x3f0
kthread+0xcf/0x100
ret_from_fork+0x31/0x50
ret_from_fork_asm+0x1a/0x30
kfence-#99: 0x00000000198a940f-0x00000000ace47d9d, size=64, cache=kmalloc-64
allocated by task 333 on cpu 8 at 17.798069s (130.453553s ago):
devm_kmalloc+0x52/0x120
devm_kvasprintf+0x66/0xb0
devm_kasprintf+0x58/0x80
hda_machine_select.cold+0x198/0x17a2 [snd_sof_intel_hda_generic]
sof_probe_work+0x7f/0x600 [snd_sof]
process_one_work+0x17b/0x330
worker_thread+0x2ce/0x3f0
kthread+0xcf/0x100
ret_from_fork+0x31/0x50
ret_from_fork_asm+0x1a/0x30
freed by task 1543 on cpu 4 at 141.586686s (6.665010s ago):
release_nodes+0x43/0xb0
devres_release_all+0x90/0xf0
device_unbind_cleanup+0xe/0x70
device_release_driver_internal+0x1c1/0x200
driver_detach+0x48/0x90
bus_remove_driver+0x6d/0xf0
pci_unregister_driver+0x42/0xb0
__do_sys_delete_module+0x1d1/0x310
do_syscall_64+0x82/0x190
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Fix it by copying the match array with devm_kmemdup_array() before we
modify it. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: SVM: Forcibly leave SMM mode on SHUTDOWN interception
Previously, commit ed129ec9057f ("KVM: x86: forcibly leave nested mode
on vCPU reset") addressed an issue where a triple fault occurring in
nested mode could lead to use-after-free scenarios. However, the commit
did not handle the analogous situation for System Management Mode (SMM).
This omission results in triggering a WARN when KVM forces a vCPU INIT
after SHUTDOWN interception while the vCPU is in SMM. This situation was
reprodused using Syzkaller by:
1) Creating a KVM VM and vCPU
2) Sending a KVM_SMI ioctl to explicitly enter SMM
3) Executing invalid instructions causing consecutive exceptions and
eventually a triple fault
The issue manifests as follows:
WARNING: CPU: 0 PID: 25506 at arch/x86/kvm/x86.c:12112
kvm_vcpu_reset+0x1d2/0x1530 arch/x86/kvm/x86.c:12112
Modules linked in:
CPU: 0 PID: 25506 Comm: syz-executor.0 Not tainted
6.1.130-syzkaller-00157-g164fe5dde9b6 #0
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
BIOS 1.12.0-1 04/01/2014
RIP: 0010:kvm_vcpu_reset+0x1d2/0x1530 arch/x86/kvm/x86.c:12112
Call Trace:
<TASK>
shutdown_interception+0x66/0xb0 arch/x86/kvm/svm/svm.c:2136
svm_invoke_exit_handler+0x110/0x530 arch/x86/kvm/svm/svm.c:3395
svm_handle_exit+0x424/0x920 arch/x86/kvm/svm/svm.c:3457
vcpu_enter_guest arch/x86/kvm/x86.c:10959 [inline]
vcpu_run+0x2c43/0x5a90 arch/x86/kvm/x86.c:11062
kvm_arch_vcpu_ioctl_run+0x50f/0x1cf0 arch/x86/kvm/x86.c:11283
kvm_vcpu_ioctl+0x570/0xf00 arch/x86/kvm/../../../virt/kvm/kvm_main.c:4122
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__x64_sys_ioctl+0x19a/0x210 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x35/0x80 arch/x86/entry/common.c:81
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
Architecturally, INIT is blocked when the CPU is in SMM, hence KVM's WARN()
in kvm_vcpu_reset() to guard against KVM bugs, e.g. to detect improper
emulation of INIT. SHUTDOWN on SVM is a weird edge case where KVM needs to
do _something_ sane with the VMCB, since it's technically undefined, and
INIT is the least awful choice given KVM's ABI.
So, double down on stuffing INIT on SHUTDOWN, and force the vCPU out of
SMM to avoid any weirdness (and the WARN).
Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
[sean: massage changelog, make it clear this isn't architectural behavior] |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: pn533: Fix use-after-free bugs caused by pn532_cmd_timeout
When the pn532 uart device is detaching, the pn532_uart_remove()
is called. But there are no functions in pn532_uart_remove() that
could delete the cmd_timeout timer, which will cause use-after-free
bugs. The process is shown below:
(thread 1) | (thread 2)
| pn532_uart_send_frame
pn532_uart_remove | mod_timer(&pn532->cmd_timeout,...)
... | (wait a time)
kfree(pn532) //FREE | pn532_cmd_timeout
| pn532_uart_send_frame
| pn532->... //USE
This patch adds del_timer_sync() in pn532_uart_remove() in order to
prevent the use-after-free bugs. What's more, the pn53x_unregister_nfc()
is well synchronized, it sets nfc_dev->shutting_down to true and there
are no syscalls could restart the cmd_timeout timer. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix use-after-free in smb_break_all_levII_oplock()
There is a room in smb_break_all_levII_oplock that can cause racy issues
when unlocking in the middle of the loop. This patch use read lock
to protect whole loop. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix use-after-free in __smb2_lease_break_noti()
Move tcp_transport free to ksmbd_conn_free. If ksmbd connection is
referenced when ksmbd server thread terminates, It will not be freed,
but conn->tcp_transport is freed. __smb2_lease_break_noti can be performed
asynchronously when the connection is disconnected. __smb2_lease_break_noti
calls ksmbd_conn_write, which can cause use-after-free
when conn->ksmbd_transport is already freed. |
| AUTOMGEN versions up to and including 8.0.0.7 (also referenced as 8.022) contain a vulnerability in that project file handling frees an object and subsequently dereferences the stale pointer when processing certain malformed fields. The dangling-pointer use enables an attacker to influence an indirect call through attacker-controlled memory, resulting in denial-of-service. In some conditions, remote code execution may be possible. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: flowtable: fix stuck flows on cleanup due to pending work
To clear the flow table on flow table free, the following sequence
normally happens in order:
1) gc_step work is stopped to disable any further stats/del requests.
2) All flow table entries are set to teardown state.
3) Run gc_step which will queue HW del work for each flow table entry.
4) Waiting for the above del work to finish (flush).
5) Run gc_step again, deleting all entries from the flow table.
6) Flow table is freed.
But if a flow table entry already has pending HW stats or HW add work
step 3 will not queue HW del work (it will be skipped), step 4 will wait
for the pending add/stats to finish, and step 5 will queue HW del work
which might execute after freeing of the flow table.
To fix the above, this patch flushes the pending work, then it sets the
teardown flag to all flows in the flowtable and it forces a garbage
collector run to queue work to remove the flows from hardware, then it
flushes this new pending work and (finally) it forces another garbage
collector run to remove the entry from the software flowtable.
Stack trace:
[47773.882335] BUG: KASAN: use-after-free in down_read+0x99/0x460
[47773.883634] Write of size 8 at addr ffff888103b45aa8 by task kworker/u20:6/543704
[47773.885634] CPU: 3 PID: 543704 Comm: kworker/u20:6 Not tainted 5.12.0-rc7+ #2
[47773.886745] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009)
[47773.888438] Workqueue: nf_ft_offload_del flow_offload_work_handler [nf_flow_table]
[47773.889727] Call Trace:
[47773.890214] dump_stack+0xbb/0x107
[47773.890818] print_address_description.constprop.0+0x18/0x140
[47773.892990] kasan_report.cold+0x7c/0xd8
[47773.894459] kasan_check_range+0x145/0x1a0
[47773.895174] down_read+0x99/0x460
[47773.899706] nf_flow_offload_tuple+0x24f/0x3c0 [nf_flow_table]
[47773.907137] flow_offload_work_handler+0x72d/0xbe0 [nf_flow_table]
[47773.913372] process_one_work+0x8ac/0x14e0
[47773.921325]
[47773.921325] Allocated by task 592159:
[47773.922031] kasan_save_stack+0x1b/0x40
[47773.922730] __kasan_kmalloc+0x7a/0x90
[47773.923411] tcf_ct_flow_table_get+0x3cb/0x1230 [act_ct]
[47773.924363] tcf_ct_init+0x71c/0x1156 [act_ct]
[47773.925207] tcf_action_init_1+0x45b/0x700
[47773.925987] tcf_action_init+0x453/0x6b0
[47773.926692] tcf_exts_validate+0x3d0/0x600
[47773.927419] fl_change+0x757/0x4a51 [cls_flower]
[47773.928227] tc_new_tfilter+0x89a/0x2070
[47773.936652]
[47773.936652] Freed by task 543704:
[47773.937303] kasan_save_stack+0x1b/0x40
[47773.938039] kasan_set_track+0x1c/0x30
[47773.938731] kasan_set_free_info+0x20/0x30
[47773.939467] __kasan_slab_free+0xe7/0x120
[47773.940194] slab_free_freelist_hook+0x86/0x190
[47773.941038] kfree+0xce/0x3a0
[47773.941644] tcf_ct_flow_table_cleanup_work
Original patch description and stack trace by Paul Blakey. |
| Starting in Thunderbird 143, the use of the native messaging API by web extensions on Windows could lead to crashes caused by use-after-free memory corruption. This vulnerability affects Firefox < 144 and Thunderbird < 144. |
| Format Plugins versions 1.1.1 and earlier are affected by a Use After Free vulnerability that could lead to memory exposure. An attacker could leverage this vulnerability to disclose sensitive information. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| A use after free issue was addressed with improved memory management. This issue is fixed in visionOS 2.3, iOS 18.3 and iPadOS 18.3, macOS Sequoia 15.3, watchOS 11.3, tvOS 18.3. A malicious application may be able to elevate privileges. Apple is aware of a report that this issue may have been actively exploited against versions of iOS before iOS 17.2. |
| In the Linux kernel, the following vulnerability has been resolved:
ieee802154/adf7242: defer destroy_workqueue call
There is a possible race condition (use-after-free) like below
(FREE) | (USE)
adf7242_remove | adf7242_channel
cancel_delayed_work_sync |
destroy_workqueue (1) | adf7242_cmd_rx
| mod_delayed_work (2)
|
The root cause for this race is that the upper layer (ieee802154) is
unaware of this detaching event and the function adf7242_channel can
be called without any checks.
To fix this, we can add a flag write at the beginning of adf7242_remove
and add flag check in adf7242_channel. Or we can just defer the
destructive operation like other commit 3e0588c291d6 ("hamradio: defer
ax25 kfree after unregister_netdev") which let the
ieee802154_unregister_hw() to handle the synchronization. This patch
takes the second option.
runs") |