CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
An issue was discovered in drivers/scsi/qedi/qedi_dbg.c in the Linux kernel before 5.1.12. In the qedi_dbg_* family of functions, there is an out-of-bounds read. |
In the Linux kernel through 5.2.14 on the powerpc platform, a local user can read vector registers of other users' processes via an interrupt. To exploit the venerability, a local user starts a transaction (via the hardware transactional memory instruction tbegin) and then accesses vector registers. At some point, the vector registers will be corrupted with the values from a different local Linux process, because MSR_TM_ACTIVE is misused in arch/powerpc/kernel/process.c. |
In the Linux kernel through 5.2.14 on the powerpc platform, a local user can read vector registers of other users' processes via a Facility Unavailable exception. To exploit the venerability, a local user starts a transaction (via the hardware transactional memory instruction tbegin) and then accesses vector registers. At some point, the vector registers will be corrupted with the values from a different local Linux process because of a missing arch/powerpc/kernel/process.c check. |
A heap overflow flaw was found in the Linux kernel, all versions 3.x.x and 4.x.x before 4.18.0, in Marvell WiFi chip driver. The vulnerability allows a remote attacker to cause a system crash, resulting in a denial of service, or execute arbitrary code. The highest threat with this vulnerability is with the availability of the system. If code execution occurs, the code will run with the permissions of root. This will affect both confidentiality and integrity of files on the system. |
The fix for CVE-2019-11599, affecting the Linux kernel before 5.0.10 was not complete. A local user could use this flaw to obtain sensitive information, cause a denial of service, or possibly have other unspecified impacts by triggering a race condition with mmget_not_zero or get_task_mm calls. |
A heap-based buffer overflow vulnerability was found in the Linux kernel, version kernel-2.6.32, in Marvell WiFi chip driver. A remote attacker could cause a denial of service (system crash) or, possibly execute arbitrary code, when the lbs_ibss_join_existing function is called after a STA connects to an AP. |
A heap-based buffer overflow was discovered in the Linux kernel, all versions 3.x.x and 4.x.x before 4.18.0, in Marvell WiFi chip driver. The flaw could occur when the station attempts a connection negotiation during the handling of the remote devices country settings. This could allow the remote device to cause a denial of service (system crash) or possibly execute arbitrary code. |
A buffer overflow flaw was found, in versions from 2.6.34 to 5.2.x, in the way Linux kernel's vhost functionality that translates virtqueue buffers to IOVs, logged the buffer descriptors during migration. A privileged guest user able to pass descriptors with invalid length to the host when migration is underway, could use this flaw to increase their privileges on the host. |
A flaw was found in the "Leaf and Chain" OCSP policy implementation in JSS' CryptoManager versions after 4.4.6, 4.5.3, 4.6.0, where it implicitly trusted the root certificate of a certificate chain. Applications using this policy may not properly verify the chain and could be vulnerable to attacks such as Man in the Middle. |
An out-of-bounds access issue was found in the Linux kernel, all versions through 5.3, in the way Linux kernel's KVM hypervisor implements the Coalesced MMIO write operation. It operates on an MMIO ring buffer 'struct kvm_coalesced_mmio' object, wherein write indices 'ring->first' and 'ring->last' value could be supplied by a host user-space process. An unprivileged host user or process with access to '/dev/kvm' device could use this flaw to crash the host kernel, resulting in a denial of service or potentially escalating privileges on the system. |
There is heap-based buffer overflow in kernel, all versions up to, excluding 5.3, in the marvell wifi chip driver in Linux kernel, that allows local users to cause a denial of service(system crash) or possibly execute arbitrary code. |
A vulnerability was found in Linux Kernel, where a Heap Overflow was found in mwifiex_set_wmm_params() function of Marvell Wifi Driver. |
There is heap-based buffer overflow in Linux kernel, all versions up to, excluding 5.3, in the marvell wifi chip driver in Linux kernel, that allows local users to cause a denial of service(system crash) or possibly execute arbitrary code. |
In the Linux kernel before 5.2.3, set_geometry in drivers/block/floppy.c does not validate the sect and head fields, as demonstrated by an integer overflow and out-of-bounds read. It can be triggered by an unprivileged local user when a floppy disk has been inserted. NOTE: QEMU creates the floppy device by default. |
Type confusion in JavaScript in Google Chrome prior to 79.0.3945.79 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. |
Insufficient policy enforcement in audio in Google Chrome prior to 79.0.3945.79 allowed a remote attacker to leak cross-origin data via a crafted HTML page. |
Out of bounds write in SQLite in Google Chrome prior to 79.0.3945.79 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. |
In the Linux kernel through 5.2.1 on the powerpc platform, when hardware transactional memory is disabled, a local user can cause a denial of service (TM Bad Thing exception and system crash) via a sigreturn() system call that sends a crafted signal frame. This affects arch/powerpc/kernel/signal_32.c and arch/powerpc/kernel/signal_64.c. |
In parse_hid_report_descriptor in drivers/input/tablet/gtco.c in the Linux kernel through 5.2.1, a malicious USB device can send an HID report that triggers an out-of-bounds write during generation of debugging messages. |
In FreeRADIUS 3.0 through 3.0.19, on average 1 in every 2048 EAP-pwd handshakes fails because the password element cannot be found within 10 iterations of the hunting and pecking loop. This leaks information that an attacker can use to recover the password of any user. This information leakage is similar to the "Dragonblood" attack and CVE-2019-9494. |