| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: fix deadlock in create_pinctrl() when handling -EPROBE_DEFER
In create_pinctrl(), pinctrl_maps_mutex is acquired before calling
add_setting(). If add_setting() returns -EPROBE_DEFER, create_pinctrl()
calls pinctrl_free(). However, pinctrl_free() attempts to acquire
pinctrl_maps_mutex, which is already held by create_pinctrl(), leading to
a potential deadlock.
This patch resolves the issue by releasing pinctrl_maps_mutex before
calling pinctrl_free(), preventing the deadlock.
This bug was discovered and resolved using Coverity Static Analysis
Security Testing (SAST) by Synopsys, Inc. |
| In the Linux kernel, the following vulnerability has been resolved:
ftruncate: pass a signed offset
The old ftruncate() syscall, using the 32-bit off_t misses a sign
extension when called in compat mode on 64-bit architectures. As a
result, passing a negative length accidentally succeeds in truncating
to file size between 2GiB and 4GiB.
Changing the type of the compat syscall to the signed compat_off_t
changes the behavior so it instead returns -EINVAL.
The native entry point, the truncate() syscall and the corresponding
loff_t based variants are all correct already and do not suffer
from this mistake. |
| In the Linux kernel, the following vulnerability has been resolved:
xdp: Remove WARN() from __xdp_reg_mem_model()
syzkaller reports a warning in __xdp_reg_mem_model().
The warning occurs only if __mem_id_init_hash_table() returns an error. It
returns the error in two cases:
1. memory allocation fails;
2. rhashtable_init() fails when some fields of rhashtable_params
struct are not initialized properly.
The second case cannot happen since there is a static const rhashtable_params
struct with valid fields. So, warning is only triggered when there is a
problem with memory allocation.
Thus, there is no sense in using WARN() to handle this error and it can be
safely removed.
WARNING: CPU: 0 PID: 5065 at net/core/xdp.c:299 __xdp_reg_mem_model+0x2d9/0x650 net/core/xdp.c:299
CPU: 0 PID: 5065 Comm: syz-executor883 Not tainted 6.8.0-syzkaller-05271-gf99c5f563c17 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
RIP: 0010:__xdp_reg_mem_model+0x2d9/0x650 net/core/xdp.c:299
Call Trace:
xdp_reg_mem_model+0x22/0x40 net/core/xdp.c:344
xdp_test_run_setup net/bpf/test_run.c:188 [inline]
bpf_test_run_xdp_live+0x365/0x1e90 net/bpf/test_run.c:377
bpf_prog_test_run_xdp+0x813/0x11b0 net/bpf/test_run.c:1267
bpf_prog_test_run+0x33a/0x3b0 kernel/bpf/syscall.c:4240
__sys_bpf+0x48d/0x810 kernel/bpf/syscall.c:5649
__do_sys_bpf kernel/bpf/syscall.c:5738 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5736 [inline]
__x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:5736
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x6d/0x75
Found by Linux Verification Center (linuxtesting.org) with syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: fully validate NFT_DATA_VALUE on store to data registers
register store validation for NFT_DATA_VALUE is conditional, however,
the datatype is always either NFT_DATA_VALUE or NFT_DATA_VERDICT. This
only requires a new helper function to infer the register type from the
set datatype so this conditional check can be removed. Otherwise,
pointer to chain object can be leaked through the registers. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: atm: cxacru: fix endpoint checking in cxacru_bind()
Syzbot is still reporting quite an old issue [1] that occurs due to
incomplete checking of present usb endpoints. As such, wrong
endpoints types may be used at urb sumbitting stage which in turn
triggers a warning in usb_submit_urb().
Fix the issue by verifying that required endpoint types are present
for both in and out endpoints, taking into account cmd endpoint type.
Unfortunately, this patch has not been tested on real hardware.
[1] Syzbot report:
usb 1-1: BOGUS urb xfer, pipe 1 != type 3
WARNING: CPU: 0 PID: 8667 at drivers/usb/core/urb.c:502 usb_submit_urb+0xed2/0x18a0 drivers/usb/core/urb.c:502
Modules linked in:
CPU: 0 PID: 8667 Comm: kworker/0:4 Not tainted 5.14.0-rc4-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Workqueue: usb_hub_wq hub_event
RIP: 0010:usb_submit_urb+0xed2/0x18a0 drivers/usb/core/urb.c:502
...
Call Trace:
cxacru_cm+0x3c0/0x8e0 drivers/usb/atm/cxacru.c:649
cxacru_card_status+0x22/0xd0 drivers/usb/atm/cxacru.c:760
cxacru_bind+0x7ac/0x11a0 drivers/usb/atm/cxacru.c:1209
usbatm_usb_probe+0x321/0x1ae0 drivers/usb/atm/usbatm.c:1055
cxacru_usb_probe+0xdf/0x1e0 drivers/usb/atm/cxacru.c:1363
usb_probe_interface+0x315/0x7f0 drivers/usb/core/driver.c:396
call_driver_probe drivers/base/dd.c:517 [inline]
really_probe+0x23c/0xcd0 drivers/base/dd.c:595
__driver_probe_device+0x338/0x4d0 drivers/base/dd.c:747
driver_probe_device+0x4c/0x1a0 drivers/base/dd.c:777
__device_attach_driver+0x20b/0x2f0 drivers/base/dd.c:894
bus_for_each_drv+0x15f/0x1e0 drivers/base/bus.c:427
__device_attach+0x228/0x4a0 drivers/base/dd.c:965
bus_probe_device+0x1e4/0x290 drivers/base/bus.c:487
device_add+0xc2f/0x2180 drivers/base/core.c:3354
usb_set_configuration+0x113a/0x1910 drivers/usb/core/message.c:2170
usb_generic_driver_probe+0xba/0x100 drivers/usb/core/generic.c:238
usb_probe_device+0xd9/0x2c0 drivers/usb/core/driver.c:293 |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/MSI: Fix UAF in msi_capability_init
KFENCE reports the following UAF:
BUG: KFENCE: use-after-free read in __pci_enable_msi_range+0x2c0/0x488
Use-after-free read at 0x0000000024629571 (in kfence-#12):
__pci_enable_msi_range+0x2c0/0x488
pci_alloc_irq_vectors_affinity+0xec/0x14c
pci_alloc_irq_vectors+0x18/0x28
kfence-#12: 0x0000000008614900-0x00000000e06c228d, size=104, cache=kmalloc-128
allocated by task 81 on cpu 7 at 10.808142s:
__kmem_cache_alloc_node+0x1f0/0x2bc
kmalloc_trace+0x44/0x138
msi_alloc_desc+0x3c/0x9c
msi_domain_insert_msi_desc+0x30/0x78
msi_setup_msi_desc+0x13c/0x184
__pci_enable_msi_range+0x258/0x488
pci_alloc_irq_vectors_affinity+0xec/0x14c
pci_alloc_irq_vectors+0x18/0x28
freed by task 81 on cpu 7 at 10.811436s:
msi_domain_free_descs+0xd4/0x10c
msi_domain_free_locked.part.0+0xc0/0x1d8
msi_domain_alloc_irqs_all_locked+0xb4/0xbc
pci_msi_setup_msi_irqs+0x30/0x4c
__pci_enable_msi_range+0x2a8/0x488
pci_alloc_irq_vectors_affinity+0xec/0x14c
pci_alloc_irq_vectors+0x18/0x28
Descriptor allocation done in:
__pci_enable_msi_range
msi_capability_init
msi_setup_msi_desc
msi_insert_msi_desc
msi_domain_insert_msi_desc
msi_alloc_desc
...
Freed in case of failure in __msi_domain_alloc_locked()
__pci_enable_msi_range
msi_capability_init
pci_msi_setup_msi_irqs
msi_domain_alloc_irqs_all_locked
msi_domain_alloc_locked
__msi_domain_alloc_locked => fails
msi_domain_free_locked
...
That failure propagates back to pci_msi_setup_msi_irqs() in
msi_capability_init() which accesses the descriptor for unmasking in the
error exit path.
Cure it by copying the descriptor and using the copy for the error exit path
unmask operation.
[ tglx: Massaged change log ] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/nouveau/dispnv04: fix null pointer dereference in nv17_tv_get_ld_modes
In nv17_tv_get_ld_modes(), the return value of drm_mode_duplicate() is
assigned to mode, which will lead to a possible NULL pointer dereference
on failure of drm_mode_duplicate(). Add a check to avoid npd. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: avoid using null object of framebuffer
Instead of using state->fb->obj[0] directly, get object from framebuffer
by calling drm_gem_fb_get_obj() and return error code when object is
null to avoid using null object of framebuffer. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/gt: Fix potential UAF by revoke of fence registers
CI has been sporadically reporting the following issue triggered by
igt@i915_selftest@live@hangcheck on ADL-P and similar machines:
<6> [414.049203] i915: Running intel_hangcheck_live_selftests/igt_reset_evict_fence
...
<6> [414.068804] i915 0000:00:02.0: [drm] GT0: GUC: submission enabled
<6> [414.068812] i915 0000:00:02.0: [drm] GT0: GUC: SLPC enabled
<3> [414.070354] Unable to pin Y-tiled fence; err:-4
<3> [414.071282] i915_vma_revoke_fence:301 GEM_BUG_ON(!i915_active_is_idle(&fence->active))
...
<4>[ 609.603992] ------------[ cut here ]------------
<2>[ 609.603995] kernel BUG at drivers/gpu/drm/i915/gt/intel_ggtt_fencing.c:301!
<4>[ 609.604003] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
<4>[ 609.604006] CPU: 0 PID: 268 Comm: kworker/u64:3 Tainted: G U W 6.9.0-CI_DRM_14785-g1ba62f8cea9c+ #1
<4>[ 609.604008] Hardware name: Intel Corporation Alder Lake Client Platform/AlderLake-P DDR4 RVP, BIOS RPLPFWI1.R00.4035.A00.2301200723 01/20/2023
<4>[ 609.604010] Workqueue: i915 __i915_gem_free_work [i915]
<4>[ 609.604149] RIP: 0010:i915_vma_revoke_fence+0x187/0x1f0 [i915]
...
<4>[ 609.604271] Call Trace:
<4>[ 609.604273] <TASK>
...
<4>[ 609.604716] __i915_vma_evict+0x2e9/0x550 [i915]
<4>[ 609.604852] __i915_vma_unbind+0x7c/0x160 [i915]
<4>[ 609.604977] force_unbind+0x24/0xa0 [i915]
<4>[ 609.605098] i915_vma_destroy+0x2f/0xa0 [i915]
<4>[ 609.605210] __i915_gem_object_pages_fini+0x51/0x2f0 [i915]
<4>[ 609.605330] __i915_gem_free_objects.isra.0+0x6a/0xc0 [i915]
<4>[ 609.605440] process_scheduled_works+0x351/0x690
...
In the past, there were similar failures reported by CI from other IGT
tests, observed on other platforms.
Before commit 63baf4f3d587 ("drm/i915/gt: Only wait for GPU activity
before unbinding a GGTT fence"), i915_vma_revoke_fence() was waiting for
idleness of vma->active via fence_update(). That commit introduced
vma->fence->active in order for the fence_update() to be able to wait
selectively on that one instead of vma->active since only idleness of
fence registers was needed. But then, another commit 0d86ee35097a
("drm/i915/gt: Make fence revocation unequivocal") replaced the call to
fence_update() in i915_vma_revoke_fence() with only fence_write(), and
also added that GEM_BUG_ON(!i915_active_is_idle(&fence->active)) in front.
No justification was provided on why we might then expect idleness of
vma->fence->active without first waiting on it.
The issue can be potentially caused by a race among revocation of fence
registers on one side and sequential execution of signal callbacks invoked
on completion of a request that was using them on the other, still
processed in parallel to revocation of those fence registers. Fix it by
waiting for idleness of vma->fence->active in i915_vma_revoke_fence().
(cherry picked from commit 24bb052d3dd499c5956abad5f7d8e4fd07da7fb1) |
| In the Linux kernel, the following vulnerability has been resolved:
tun: add missing verification for short frame
The cited commit missed to check against the validity of the frame length
in the tun_xdp_one() path, which could cause a corrupted skb to be sent
downstack. Even before the skb is transmitted, the
tun_xdp_one-->eth_type_trans() may access the Ethernet header although it
can be less than ETH_HLEN. Once transmitted, this could either cause
out-of-bound access beyond the actual length, or confuse the underlayer
with incorrect or inconsistent header length in the skb metadata.
In the alternative path, tun_get_user() already prohibits short frame which
has the length less than Ethernet header size from being transmitted for
IFF_TAP.
This is to drop any frame shorter than the Ethernet header size just like
how tun_get_user() does.
CVE: CVE-2024-41091 |
| In the Linux kernel, the following vulnerability has been resolved:
tap: add missing verification for short frame
The cited commit missed to check against the validity of the frame length
in the tap_get_user_xdp() path, which could cause a corrupted skb to be
sent downstack. Even before the skb is transmitted, the
tap_get_user_xdp()-->skb_set_network_header() may assume the size is more
than ETH_HLEN. Once transmitted, this could either cause out-of-bound
access beyond the actual length, or confuse the underlayer with incorrect
or inconsistent header length in the skb metadata.
In the alternative path, tap_get_user() already prohibits short frame which
has the length less than Ethernet header size from being transmitted.
This is to drop any frame shorter than the Ethernet header size just like
how tap_get_user() does.
CVE: CVE-2024-41090 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/nouveau/dispnv04: fix null pointer dereference in nv17_tv_get_hd_modes
In nv17_tv_get_hd_modes(), the return value of drm_mode_duplicate() is
assigned to mode, which will lead to a possible NULL pointer dereference
on failure of drm_mode_duplicate(). The same applies to drm_cvt_mode().
Add a check to avoid null pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
null_blk: fix validation of block size
Block size should be between 512 and PAGE_SIZE and be a power of 2. The current
check does not validate this, so update the check.
Without this patch, null_blk would Oops due to a null pointer deref when
loaded with bs=1536 [1].
[axboe: remove unnecessary braces and != 0 check] |
| In the Linux kernel, the following vulnerability has been resolved:
NFSv4: Fix memory leak in nfs4_set_security_label
We leak nfs_fattr and nfs4_label every time we set a security xattr. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: avoid double free special payload
If a discard request needs to be retried, and that retry may fail before
a new special payload is added, a double free will result. Clear the
RQF_SPECIAL_LOAD when the request is cleaned. |
| In the Linux kernel, the following vulnerability has been resolved:
ibmvnic: Add tx check to prevent skb leak
Below is a summary of how the driver stores a reference to an skb during
transmit:
tx_buff[free_map[consumer_index]]->skb = new_skb;
free_map[consumer_index] = IBMVNIC_INVALID_MAP;
consumer_index ++;
Where variable data looks like this:
free_map == [4, IBMVNIC_INVALID_MAP, IBMVNIC_INVALID_MAP, 0, 3]
consumer_index^
tx_buff == [skb=null, skb=<ptr>, skb=<ptr>, skb=null, skb=null]
The driver has checks to ensure that free_map[consumer_index] pointed to
a valid index but there was no check to ensure that this index pointed
to an unused/null skb address. So, if, by some chance, our free_map and
tx_buff lists become out of sync then we were previously risking an
skb memory leak. This could then cause tcp congestion control to stop
sending packets, eventually leading to ETIMEDOUT.
Therefore, add a conditional to ensure that the skb address is null. If
not then warn the user (because this is still a bug that should be
patched) and free the old pointer to prevent memleak/tcp problems. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/pseries: Whitelist dtl slub object for copying to userspace
Reading the dispatch trace log from /sys/kernel/debug/powerpc/dtl/cpu-*
results in a BUG() when the config CONFIG_HARDENED_USERCOPY is enabled as
shown below.
kernel BUG at mm/usercopy.c:102!
Oops: Exception in kernel mode, sig: 5 [#1]
LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA pSeries
Modules linked in: xfs libcrc32c dm_service_time sd_mod t10_pi sg ibmvfc
scsi_transport_fc ibmveth pseries_wdt dm_multipath dm_mirror dm_region_hash dm_log dm_mod fuse
CPU: 27 PID: 1815 Comm: python3 Not tainted 6.10.0-rc3 #85
Hardware name: IBM,9040-MRX POWER10 (raw) 0x800200 0xf000006 of:IBM,FW1060.00 (NM1060_042) hv:phyp pSeries
NIP: c0000000005d23d4 LR: c0000000005d23d0 CTR: 00000000006ee6f8
REGS: c000000120c078c0 TRAP: 0700 Not tainted (6.10.0-rc3)
MSR: 8000000000029033 <SF,EE,ME,IR,DR,RI,LE> CR: 2828220f XER: 0000000e
CFAR: c0000000001fdc80 IRQMASK: 0
[ ... GPRs omitted ... ]
NIP [c0000000005d23d4] usercopy_abort+0x78/0xb0
LR [c0000000005d23d0] usercopy_abort+0x74/0xb0
Call Trace:
usercopy_abort+0x74/0xb0 (unreliable)
__check_heap_object+0xf8/0x120
check_heap_object+0x218/0x240
__check_object_size+0x84/0x1a4
dtl_file_read+0x17c/0x2c4
full_proxy_read+0x8c/0x110
vfs_read+0xdc/0x3a0
ksys_read+0x84/0x144
system_call_exception+0x124/0x330
system_call_vectored_common+0x15c/0x2ec
--- interrupt: 3000 at 0x7fff81f3ab34
Commit 6d07d1cd300f ("usercopy: Restrict non-usercopy caches to size 0")
requires that only whitelisted areas in slab/slub objects can be copied to
userspace when usercopy hardening is enabled using CONFIG_HARDENED_USERCOPY.
Dtl contains hypervisor dispatch events which are expected to be read by
privileged users. Hence mark this safe for user access.
Specify useroffset=0 and usersize=DISPATCH_LOG_BYTES to whitelist the
entire object. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/eeh: avoid possible crash when edev->pdev changes
If a PCI device is removed during eeh_pe_report_edev(), edev->pdev
will change and can cause a crash, hold the PCI rescan/remove lock
while taking a copy of edev->pdev->bus. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: cancel all works upon hci_unregister_dev()
syzbot is reporting that calling hci_release_dev() from hci_error_reset()
due to hci_dev_put() from hci_error_reset() can cause deadlock at
destroy_workqueue(), for hci_error_reset() is called from
hdev->req_workqueue which destroy_workqueue() needs to flush.
We need to make sure that hdev->{rx_work,cmd_work,tx_work} which are
queued into hdev->workqueue and hdev->{power_on,error_reset} which are
queued into hdev->req_workqueue are no longer running by the moment
destroy_workqueue(hdev->workqueue);
destroy_workqueue(hdev->req_workqueue);
are called from hci_release_dev().
Call cancel_work_sync() on these work items from hci_unregister_dev()
as soon as hdev->list is removed from hci_dev_list. |
| In the Linux kernel, the following vulnerability has been resolved:
bluetooth/l2cap: sync sock recv cb and release
The problem occurs between the system call to close the sock and hci_rx_work,
where the former releases the sock and the latter accesses it without lock protection.
CPU0 CPU1
---- ----
sock_close hci_rx_work
l2cap_sock_release hci_acldata_packet
l2cap_sock_kill l2cap_recv_frame
sk_free l2cap_conless_channel
l2cap_sock_recv_cb
If hci_rx_work processes the data that needs to be received before the sock is
closed, then everything is normal; Otherwise, the work thread may access the
released sock when receiving data.
Add a chan mutex in the rx callback of the sock to achieve synchronization between
the sock release and recv cb.
Sock is dead, so set chan data to NULL, avoid others use invalid sock pointer. |