Search

Search Results (331767 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-71138 1 Linux 1 Linux Kernel 2026-02-09 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: Add missing NULL pointer check for pingpong interface It is checked almost always in dpu_encoder_phys_wb_setup_ctl(), but in a single place the check is missing. Also use convenient locals instead of phys_enc->* where available. Patchwork: https://patchwork.freedesktop.org/patch/693860/
CVE-2025-71137 1 Linux 1 Linux Kernel 2026-02-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: octeontx2-pf: fix "UBSAN: shift-out-of-bounds error" This patch ensures that the RX ring size (rx_pending) is not set below the permitted length. This avoids UBSAN shift-out-of-bounds errors when users passes small or zero ring sizes via ethtool -G.
CVE-2025-71136 1 Linux 1 Linux Kernel 2026-02-09 N/A
In the Linux kernel, the following vulnerability has been resolved: media: adv7842: Avoid possible out-of-bounds array accesses in adv7842_cp_log_status() It's possible for cp_read() and hdmi_read() to return -EIO. Those values are further used as indexes for accessing arrays. Fix that by checking return values where it's needed. Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2025-71135 1 Linux 1 Linux Kernel 2026-02-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: md/raid5: fix possible null-pointer dereferences in raid5_store_group_thread_cnt() The variable mddev->private is first assigned to conf and then checked: conf = mddev->private; if (!conf) ... If conf is NULL, then mddev->private is also NULL. In this case, null-pointer dereferences can occur when calling raid5_quiesce(): raid5_quiesce(mddev, true); raid5_quiesce(mddev, false); since mddev->private is assigned to conf again in raid5_quiesce(), and conf is dereferenced in several places, for example: conf->quiesce = 0; wake_up(&conf->wait_for_quiescent); To fix this issue, the function should unlock mddev and return before invoking raid5_quiesce() when conf is NULL, following the existing pattern in raid5_change_consistency_policy().
CVE-2025-71134 1 Linux 1 Linux Kernel 2026-02-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/page_alloc: change all pageblocks migrate type on coalescing When a page is freed it coalesces with a buddy into a higher order page while possible. When the buddy page migrate type differs, it is expected to be updated to match the one of the page being freed. However, only the first pageblock of the buddy page is updated, while the rest of the pageblocks are left unchanged. That causes warnings in later expand() and other code paths (like below), since an inconsistency between migration type of the list containing the page and the page-owned pageblocks migration types is introduced. [ 308.986589] ------------[ cut here ]------------ [ 308.987227] page type is 0, passed migratetype is 1 (nr=256) [ 308.987275] WARNING: CPU: 1 PID: 5224 at mm/page_alloc.c:812 expand+0x23c/0x270 [ 308.987293] Modules linked in: algif_hash(E) af_alg(E) nft_fib_inet(E) nft_fib_ipv4(E) nft_fib_ipv6(E) nft_fib(E) nft_reject_inet(E) nf_reject_ipv4(E) nf_reject_ipv6(E) nft_reject(E) nft_ct(E) nft_chain_nat(E) nf_nat(E) nf_conntrack(E) nf_defrag_ipv6(E) nf_defrag_ipv4(E) nf_tables(E) s390_trng(E) vfio_ccw(E) mdev(E) vfio_iommu_type1(E) vfio(E) sch_fq_codel(E) drm(E) i2c_core(E) drm_panel_orientation_quirks(E) loop(E) nfnetlink(E) vsock_loopback(E) vmw_vsock_virtio_transport_common(E) vsock(E) ctcm(E) fsm(E) diag288_wdt(E) watchdog(E) zfcp(E) scsi_transport_fc(E) ghash_s390(E) prng(E) aes_s390(E) des_generic(E) des_s390(E) libdes(E) sha3_512_s390(E) sha3_256_s390(E) sha_common(E) paes_s390(E) crypto_engine(E) pkey_cca(E) pkey_ep11(E) zcrypt(E) rng_core(E) pkey_pckmo(E) pkey(E) autofs4(E) [ 308.987439] Unloaded tainted modules: hmac_s390(E):2 [ 308.987650] CPU: 1 UID: 0 PID: 5224 Comm: mempig_verify Kdump: loaded Tainted: G E 6.18.0-gcc-bpf-debug #431 PREEMPT [ 308.987657] Tainted: [E]=UNSIGNED_MODULE [ 308.987661] Hardware name: IBM 3906 M04 704 (z/VM 7.3.0) [ 308.987666] Krnl PSW : 0404f00180000000 00000349976fa600 (expand+0x240/0x270) [ 308.987676] R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:3 PM:0 RI:0 EA:3 [ 308.987682] Krnl GPRS: 0000034980000004 0000000000000005 0000000000000030 000003499a0e6d88 [ 308.987688] 0000000000000005 0000034980000005 000002be803ac000 0000023efe6c8300 [ 308.987692] 0000000000000008 0000034998d57290 000002be00000100 0000023e00000008 [ 308.987696] 0000000000000000 0000000000000000 00000349976fa5fc 000002c99b1eb6f0 [ 308.987708] Krnl Code: 00000349976fa5f0: c020008a02f2 larl %r2,000003499883abd4 00000349976fa5f6: c0e5ffe3f4b5 brasl %r14,0000034997378f60 #00000349976fa5fc: af000000 mc 0,0 >00000349976fa600: a7f4ff4c brc 15,00000349976fa498 00000349976fa604: b9040026 lgr %r2,%r6 00000349976fa608: c0300088317f larl %r3,0000034998800906 00000349976fa60e: c0e5fffdb6e1 brasl %r14,00000349976b13d0 00000349976fa614: af000000 mc 0,0 [ 308.987734] Call Trace: [ 308.987738] [<00000349976fa600>] expand+0x240/0x270 [ 308.987744] ([<00000349976fa5fc>] expand+0x23c/0x270) [ 308.987749] [<00000349976ff95e>] rmqueue_bulk+0x71e/0x940 [ 308.987754] [<00000349976ffd7e>] __rmqueue_pcplist+0x1fe/0x2a0 [ 308.987759] [<0000034997700966>] rmqueue.isra.0+0xb46/0xf40 [ 308.987763] [<0000034997703ec8>] get_page_from_freelist+0x198/0x8d0 [ 308.987768] [<0000034997706fa8>] __alloc_frozen_pages_noprof+0x198/0x400 [ 308.987774] [<00000349977536f8>] alloc_pages_mpol+0xb8/0x220 [ 308.987781] [<0000034997753bf6>] folio_alloc_mpol_noprof+0x26/0xc0 [ 308.987786] [<0000034997753e4c>] vma_alloc_folio_noprof+0x6c/0xa0 [ 308.987791] [<0000034997775b22>] vma_alloc_anon_folio_pmd+0x42/0x240 [ 308.987799] [<000003499777bfea>] __do_huge_pmd_anonymous_page+0x3a/0x210 [ 308.987804] [<00000349976cb0 ---truncated---
CVE-2025-71133 1 Linux 1 Linux Kernel 2026-02-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/irdma: avoid invalid read in irdma_net_event irdma_net_event() should not dereference anything from "neigh" (alias "ptr") until it has checked that the event is NETEVENT_NEIGH_UPDATE. Other events come with different structures pointed to by "ptr" and they may be smaller than struct neighbour. Move the read of neigh->dev under the NETEVENT_NEIGH_UPDATE case. The bug is mostly harmless, but it triggers KASAN on debug kernels: BUG: KASAN: stack-out-of-bounds in irdma_net_event+0x32e/0x3b0 [irdma] Read of size 8 at addr ffffc900075e07f0 by task kworker/27:2/542554 CPU: 27 PID: 542554 Comm: kworker/27:2 Kdump: loaded Not tainted 5.14.0-630.el9.x86_64+debug #1 Hardware name: [...] Workqueue: events rt6_probe_deferred Call Trace: <IRQ> dump_stack_lvl+0x60/0xb0 print_address_description.constprop.0+0x2c/0x3f0 print_report+0xb4/0x270 kasan_report+0x92/0xc0 irdma_net_event+0x32e/0x3b0 [irdma] notifier_call_chain+0x9e/0x180 atomic_notifier_call_chain+0x5c/0x110 rt6_do_redirect+0xb91/0x1080 tcp_v6_err+0xe9b/0x13e0 icmpv6_notify+0x2b2/0x630 ndisc_redirect_rcv+0x328/0x530 icmpv6_rcv+0xc16/0x1360 ip6_protocol_deliver_rcu+0xb84/0x12e0 ip6_input_finish+0x117/0x240 ip6_input+0xc4/0x370 ipv6_rcv+0x420/0x7d0 __netif_receive_skb_one_core+0x118/0x1b0 process_backlog+0xd1/0x5d0 __napi_poll.constprop.0+0xa3/0x440 net_rx_action+0x78a/0xba0 handle_softirqs+0x2d4/0x9c0 do_softirq+0xad/0xe0 </IRQ>
CVE-2025-71132 1 Linux 1 Linux Kernel 2026-02-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: smc91x: fix broken irq-context in PREEMPT_RT When smc91x.c is built with PREEMPT_RT, the following splat occurs in FVP_RevC: [ 13.055000] smc91x LNRO0003:00 eth0: link up, 10Mbps, half-duplex, lpa 0x0000 [ 13.062137] BUG: workqueue leaked atomic, lock or RCU: kworker/2:1[106] [ 13.062137] preempt=0x00000000 lock=0->0 RCU=0->1 workfn=mld_ifc_work [ 13.062266] C ** replaying previous printk message ** [ 13.062266] CPU: 2 UID: 0 PID: 106 Comm: kworker/2:1 Not tainted 6.18.0-dirty #179 PREEMPT_{RT,(full)} [ 13.062353] Hardware name: , BIOS [ 13.062382] Workqueue: mld mld_ifc_work [ 13.062469] Call trace: [ 13.062494] show_stack+0x24/0x40 (C) [ 13.062602] __dump_stack+0x28/0x48 [ 13.062710] dump_stack_lvl+0x7c/0xb0 [ 13.062818] dump_stack+0x18/0x34 [ 13.062926] process_scheduled_works+0x294/0x450 [ 13.063043] worker_thread+0x260/0x3d8 [ 13.063124] kthread+0x1c4/0x228 [ 13.063235] ret_from_fork+0x10/0x20 This happens because smc_special_trylock() disables IRQs even on PREEMPT_RT, but smc_special_unlock() does not restore IRQs on PREEMPT_RT. The reason is that smc_special_unlock() calls spin_unlock_irqrestore(), and rcu_read_unlock_bh() in __dev_queue_xmit() cannot invoke rcu_read_unlock() through __local_bh_enable_ip() when current->softirq_disable_cnt becomes zero. To address this issue, replace smc_special_trylock() with spin_trylock_irqsave().
CVE-2025-71131 1 Linux 1 Linux Kernel 2026-02-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: seqiv - Do not use req->iv after crypto_aead_encrypt As soon as crypto_aead_encrypt is called, the underlying request may be freed by an asynchronous completion. Thus dereferencing req->iv after it returns is invalid. Instead of checking req->iv against info, create a new variable unaligned_info and use it for that purpose instead.
CVE-2025-71130 1 Linux 1 Linux Kernel 2026-02-09 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/i915/gem: Zero-initialize the eb.vma array in i915_gem_do_execbuffer Initialize the eb.vma array with values of 0 when the eb structure is first set up. In particular, this sets the eb->vma[i].vma pointers to NULL, simplifying cleanup and getting rid of the bug described below. During the execution of eb_lookup_vmas(), the eb->vma array is successively filled up with struct eb_vma objects. This process includes calling eb_add_vma(), which might fail; however, even in the event of failure, eb->vma[i].vma is set for the currently processed buffer. If eb_add_vma() fails, eb_lookup_vmas() returns with an error, which prompts a call to eb_release_vmas() to clean up the mess. Since eb_lookup_vmas() might fail during processing any (possibly not first) buffer, eb_release_vmas() checks whether a buffer's vma is NULL to know at what point did the lookup function fail. In eb_lookup_vmas(), eb->vma[i].vma is set to NULL if either the helper function eb_lookup_vma() or eb_validate_vma() fails. eb->vma[i+1].vma is set to NULL in case i915_gem_object_userptr_submit_init() fails; the current one needs to be cleaned up by eb_release_vmas() at this point, so the next one is set. If eb_add_vma() fails, neither the current nor the next vma is set to NULL, which is a source of a NULL deref bug described in the issue linked in the Closes tag. When entering eb_lookup_vmas(), the vma pointers are set to the slab poison value, instead of NULL. This doesn't matter for the actual lookup, since it gets overwritten anyway, however the eb_release_vmas() function only recognizes NULL as the stopping value, hence the pointers are being set to NULL as they go in case of intermediate failure. This patch changes the approach to filling them all with NULL at the start instead, rather than handling that manually during failure. (cherry picked from commit 08889b706d4f0b8d2352b7ca29c2d8df4d0787cd)
CVE-2025-71129 1 Linux 1 Linux Kernel 2026-02-09 N/A
In the Linux kernel, the following vulnerability has been resolved: LoongArch: BPF: Sign extend kfunc call arguments The kfunc calls are native calls so they should follow LoongArch calling conventions. Sign extend its arguments properly to avoid kernel panic. This is done by adding a new emit_abi_ext() helper. The emit_abi_ext() helper performs extension in place meaning a value already store in the target register (Note: this is different from the existing sign_extend() helper and thus we can't reuse it).
CVE-2025-71128 1 Linux 1 Linux Kernel 2026-02-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: erspan: Initialize options_len before referencing options. The struct ip_tunnel_info has a flexible array member named options that is protected by a counted_by(options_len) attribute. The compiler will use this information to enforce runtime bounds checking deployed by FORTIFY_SOURCE string helpers. As laid out in the GCC documentation, the counter must be initialized before the first reference to the flexible array member. After scanning through the files that use struct ip_tunnel_info and also refer to options or options_len, it appears the normal case is to use the ip_tunnel_info_opts_set() helper. Said helper would initialize options_len properly before copying data into options, however in the GRE ERSPAN code a partial update is done, preventing the use of the helper function. Before this change the handling of ERSPAN traffic in GRE tunnels would cause a kernel panic when the kernel is compiled with GCC 15+ and having FORTIFY_SOURCE configured: memcpy: detected buffer overflow: 4 byte write of buffer size 0 Call Trace: <IRQ> __fortify_panic+0xd/0xf erspan_rcv.cold+0x68/0x83 ? ip_route_input_slow+0x816/0x9d0 gre_rcv+0x1b2/0x1c0 gre_rcv+0x8e/0x100 ? raw_v4_input+0x2a0/0x2b0 ip_protocol_deliver_rcu+0x1ea/0x210 ip_local_deliver_finish+0x86/0x110 ip_local_deliver+0x65/0x110 ? ip_rcv_finish_core+0xd6/0x360 ip_rcv+0x186/0x1a0 Reported-at: https://launchpad.net/bugs/2129580
CVE-2025-71127 1 Linux 1 Linux Kernel 2026-02-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: Discard Beacon frames to non-broadcast address Beacon frames are required to be sent to the broadcast address, see IEEE Std 802.11-2020, 11.1.3.1 ("The Address 1 field of the Beacon .. frame shall be set to the broadcast address"). A unicast Beacon frame might be used as a targeted attack to get one of the associated STAs to do something (e.g., using CSA to move it to another channel). As such, it is better have strict filtering for this on the received side and discard all Beacon frames that are sent to an unexpected address. This is even more important for cases where beacon protection is used. The current implementation in mac80211 is correctly discarding unicast Beacon frames if the Protected Frame bit in the Frame Control field is set to 0. However, if that bit is set to 1, the logic used for checking for configured BIGTK(s) does not actually work. If the driver does not have logic for dropping unicast Beacon frames with Protected Frame bit 1, these frames would be accepted in mac80211 processing as valid Beacon frames even though they are not protected. This would allow beacon protection to be bypassed. While the logic for checking beacon protection could be extended to cover this corner case, a more generic check for discard all Beacon frames based on A1=unicast address covers this without needing additional changes. Address all these issues by dropping received Beacon frames if they are sent to a non-broadcast address.
CVE-2025-71126 1 Linux 1 Linux Kernel 2026-02-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mptcp: avoid deadlock on fallback while reinjecting Jakub reported an MPTCP deadlock at fallback time: WARNING: possible recursive locking detected 6.18.0-rc7-virtme #1 Not tainted -------------------------------------------- mptcp_connect/20858 is trying to acquire lock: ff1100001da18b60 (&msk->fallback_lock){+.-.}-{3:3}, at: __mptcp_try_fallback+0xd8/0x280 but task is already holding lock: ff1100001da18b60 (&msk->fallback_lock){+.-.}-{3:3}, at: __mptcp_retrans+0x352/0xaa0 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&msk->fallback_lock); lock(&msk->fallback_lock); *** DEADLOCK *** May be due to missing lock nesting notation 3 locks held by mptcp_connect/20858: #0: ff1100001da18290 (sk_lock-AF_INET){+.+.}-{0:0}, at: mptcp_sendmsg+0x114/0x1bc0 #1: ff1100001db40fd0 (k-sk_lock-AF_INET#2){+.+.}-{0:0}, at: __mptcp_retrans+0x2cb/0xaa0 #2: ff1100001da18b60 (&msk->fallback_lock){+.-.}-{3:3}, at: __mptcp_retrans+0x352/0xaa0 stack backtrace: CPU: 0 UID: 0 PID: 20858 Comm: mptcp_connect Not tainted 6.18.0-rc7-virtme #1 PREEMPT(full) Hardware name: Bochs, BIOS Bochs 01/01/2011 Call Trace: <TASK> dump_stack_lvl+0x6f/0xa0 print_deadlock_bug.cold+0xc0/0xcd validate_chain+0x2ff/0x5f0 __lock_acquire+0x34c/0x740 lock_acquire.part.0+0xbc/0x260 _raw_spin_lock_bh+0x38/0x50 __mptcp_try_fallback+0xd8/0x280 mptcp_sendmsg_frag+0x16c2/0x3050 __mptcp_retrans+0x421/0xaa0 mptcp_release_cb+0x5aa/0xa70 release_sock+0xab/0x1d0 mptcp_sendmsg+0xd5b/0x1bc0 sock_write_iter+0x281/0x4d0 new_sync_write+0x3c5/0x6f0 vfs_write+0x65e/0xbb0 ksys_write+0x17e/0x200 do_syscall_64+0xbb/0xfd0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7fa5627cbc5e Code: 4d 89 d8 e8 14 bd 00 00 4c 8b 5d f8 41 8b 93 08 03 00 00 59 5e 48 83 f8 fc 74 11 c9 c3 0f 1f 80 00 00 00 00 48 8b 45 10 0f 05 <c9> c3 83 e2 39 83 fa 08 75 e7 e8 13 ff ff ff 0f 1f 00 f3 0f 1e fa RSP: 002b:00007fff1fe14700 EFLAGS: 00000202 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000000005 RCX: 00007fa5627cbc5e RDX: 0000000000001f9c RSI: 00007fff1fe16984 RDI: 0000000000000005 RBP: 00007fff1fe14710 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000202 R12: 00007fff1fe16920 R13: 0000000000002000 R14: 0000000000001f9c R15: 0000000000001f9c The packet scheduler could attempt a reinjection after receiving an MP_FAIL and before the infinite map has been transmitted, causing a deadlock since MPTCP needs to do the reinjection atomically from WRT fallback. Address the issue explicitly avoiding the reinjection in the critical scenario. Note that this is the only fallback critical section that could potentially send packets and hit the double-lock.
CVE-2025-71125 1 Linux 1 Linux Kernel 2026-02-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tracing: Do not register unsupported perf events Synthetic events currently do not have a function to register perf events. This leads to calling the tracepoint register functions with a NULL function pointer which triggers: ------------[ cut here ]------------ WARNING: kernel/tracepoint.c:175 at tracepoint_add_func+0x357/0x370, CPU#2: perf/2272 Modules linked in: kvm_intel kvm irqbypass CPU: 2 UID: 0 PID: 2272 Comm: perf Not tainted 6.18.0-ftest-11964-ge022764176fc-dirty #323 PREEMPTLAZY Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.17.0-debian-1.17.0-1 04/01/2014 RIP: 0010:tracepoint_add_func+0x357/0x370 Code: 28 9c e8 4c 0b f5 ff eb 0f 4c 89 f7 48 c7 c6 80 4d 28 9c e8 ab 89 f4 ff 31 c0 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc cc <0f> 0b 49 c7 c6 ea ff ff ff e9 ee fe ff ff 0f 0b e9 f9 fe ff ff 0f RSP: 0018:ffffabc0c44d3c40 EFLAGS: 00010246 RAX: 0000000000000001 RBX: ffff9380aa9e4060 RCX: 0000000000000000 RDX: 000000000000000a RSI: ffffffff9e1d4a98 RDI: ffff937fcf5fd6c8 RBP: 0000000000000001 R08: 0000000000000007 R09: ffff937fcf5fc780 R10: 0000000000000003 R11: ffffffff9c193910 R12: 000000000000000a R13: ffffffff9e1e5888 R14: 0000000000000000 R15: ffffabc0c44d3c78 FS: 00007f6202f5f340(0000) GS:ffff93819f00f000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055d3162281a8 CR3: 0000000106a56003 CR4: 0000000000172ef0 Call Trace: <TASK> tracepoint_probe_register+0x5d/0x90 synth_event_reg+0x3c/0x60 perf_trace_event_init+0x204/0x340 perf_trace_init+0x85/0xd0 perf_tp_event_init+0x2e/0x50 perf_try_init_event+0x6f/0x230 ? perf_event_alloc+0x4bb/0xdc0 perf_event_alloc+0x65a/0xdc0 __se_sys_perf_event_open+0x290/0x9f0 do_syscall_64+0x93/0x7b0 ? entry_SYSCALL_64_after_hwframe+0x76/0x7e ? trace_hardirqs_off+0x53/0xc0 entry_SYSCALL_64_after_hwframe+0x76/0x7e Instead, have the code return -ENODEV, which doesn't warn and has perf error out with: # perf record -e synthetic:futex_wait Error: The sys_perf_event_open() syscall returned with 19 (No such device) for event (synthetic:futex_wait). "dmesg | grep -i perf" may provide additional information. Ideally perf should support synthetic events, but for now just fix the warning. The support can come later.
CVE-2025-71124 1 Linux 1 Linux Kernel 2026-02-09 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/msm/a6xx: move preempt_prepare_postamble after error check Move the call to preempt_prepare_postamble() after verifying that preempt_postamble_ptr is valid. If preempt_postamble_ptr is NULL, dereferencing it in preempt_prepare_postamble() would lead to a crash. This change avoids calling the preparation function when the postamble allocation has failed, preventing potential NULL pointer dereference and ensuring proper error handling. Patchwork: https://patchwork.freedesktop.org/patch/687659/
CVE-2025-71123 1 Linux 1 Linux Kernel 2026-02-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: fix string copying in parse_apply_sb_mount_options() strscpy_pad() can't be used to copy a non-NUL-term string into a NUL-term string of possibly bigger size. Commit 0efc5990bca5 ("string.h: Introduce memtostr() and memtostr_pad()") provides additional information in that regard. So if this happens, the following warning is observed: strnlen: detected buffer overflow: 65 byte read of buffer size 64 WARNING: CPU: 0 PID: 28655 at lib/string_helpers.c:1032 __fortify_report+0x96/0xc0 lib/string_helpers.c:1032 Modules linked in: CPU: 0 UID: 0 PID: 28655 Comm: syz-executor.3 Not tainted 6.12.54-syzkaller-00144-g5f0270f1ba00 #0 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:__fortify_report+0x96/0xc0 lib/string_helpers.c:1032 Call Trace: <TASK> __fortify_panic+0x1f/0x30 lib/string_helpers.c:1039 strnlen include/linux/fortify-string.h:235 [inline] sized_strscpy include/linux/fortify-string.h:309 [inline] parse_apply_sb_mount_options fs/ext4/super.c:2504 [inline] __ext4_fill_super fs/ext4/super.c:5261 [inline] ext4_fill_super+0x3c35/0xad00 fs/ext4/super.c:5706 get_tree_bdev_flags+0x387/0x620 fs/super.c:1636 vfs_get_tree+0x93/0x380 fs/super.c:1814 do_new_mount fs/namespace.c:3553 [inline] path_mount+0x6ae/0x1f70 fs/namespace.c:3880 do_mount fs/namespace.c:3893 [inline] __do_sys_mount fs/namespace.c:4103 [inline] __se_sys_mount fs/namespace.c:4080 [inline] __x64_sys_mount+0x280/0x300 fs/namespace.c:4080 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x64/0x140 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x76/0x7e Since userspace is expected to provide s_mount_opts field to be at most 63 characters long with the ending byte being NUL-term, use a 64-byte buffer which matches the size of s_mount_opts, so that strscpy_pad() does its job properly. Return with error if the user still managed to provide a non-NUL-term string here. Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
CVE-2025-71122 1 Linux 1 Linux Kernel 2026-02-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iommufd/selftest: Check for overflow in IOMMU_TEST_OP_ADD_RESERVED syzkaller found it could overflow math in the test infrastructure and cause a WARN_ON by corrupting the reserved interval tree. This only effects test kernels with CONFIG_IOMMUFD_TEST. Validate the user input length in the test ioctl.
CVE-2025-71121 1 Linux 1 Linux Kernel 2026-02-09 N/A
In the Linux kernel, the following vulnerability has been resolved: parisc: Do not reprogram affinitiy on ASP chip The ASP chip is a very old variant of the GSP chip and is used e.g. in HP 730 workstations. When trying to reprogram the affinity it will crash with a HPMC as the relevant registers don't seem to be at the usual location. Let's avoid the crash by checking the sversion. Also note, that reprogramming isn't necessary either, as the HP730 is a just a single-CPU machine.
CVE-2025-71120 1 Linux 1 Linux Kernel 2026-02-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: SUNRPC: svcauth_gss: avoid NULL deref on zero length gss_token in gss_read_proxy_verf A zero length gss_token results in pages == 0 and in_token->pages[0] is NULL. The code unconditionally evaluates page_address(in_token->pages[0]) for the initial memcpy, which can dereference NULL even when the copy length is 0. Guard the first memcpy so it only runs when length > 0.
CVE-2025-71119 1 Linux 1 Linux Kernel 2026-02-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/kexec: Enable SMT before waking offline CPUs If SMT is disabled or a partial SMT state is enabled, when a new kernel image is loaded for kexec, on reboot the following warning is observed: kexec: Waking offline cpu 228. WARNING: CPU: 0 PID: 9062 at arch/powerpc/kexec/core_64.c:223 kexec_prepare_cpus+0x1b0/0x1bc [snip] NIP kexec_prepare_cpus+0x1b0/0x1bc LR kexec_prepare_cpus+0x1a0/0x1bc Call Trace: kexec_prepare_cpus+0x1a0/0x1bc (unreliable) default_machine_kexec+0x160/0x19c machine_kexec+0x80/0x88 kernel_kexec+0xd0/0x118 __do_sys_reboot+0x210/0x2c4 system_call_exception+0x124/0x320 system_call_vectored_common+0x15c/0x2ec This occurs as add_cpu() fails due to cpu_bootable() returning false for CPUs that fail the cpu_smt_thread_allowed() check or non primary threads if SMT is disabled. Fix the issue by enabling SMT and resetting the number of SMT threads to the number of threads per core, before attempting to wake up all present CPUs.