| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
igb: clean up in all error paths when enabling SR-IOV
After commit 50f303496d92 ("igb: Enable SR-IOV after reinit"), removing
the igb module could hang or crash (depending on the machine) when the
module has been loaded with the max_vfs parameter set to some value != 0.
In case of one test machine with a dual port 82580, this hang occurred:
[ 232.480687] igb 0000:41:00.1: removed PHC on enp65s0f1
[ 233.093257] igb 0000:41:00.1: IOV Disabled
[ 233.329969] pcieport 0000:40:01.0: AER: Multiple Uncorrected (Non-Fatal) err0
[ 233.340302] igb 0000:41:00.0: PCIe Bus Error: severity=Uncorrected (Non-Fata)
[ 233.352248] igb 0000:41:00.0: device [8086:1516] error status/mask=00100000
[ 233.361088] igb 0000:41:00.0: [20] UnsupReq (First)
[ 233.368183] igb 0000:41:00.0: AER: TLP Header: 40000001 0000040f cdbfc00c c
[ 233.376846] igb 0000:41:00.1: PCIe Bus Error: severity=Uncorrected (Non-Fata)
[ 233.388779] igb 0000:41:00.1: device [8086:1516] error status/mask=00100000
[ 233.397629] igb 0000:41:00.1: [20] UnsupReq (First)
[ 233.404736] igb 0000:41:00.1: AER: TLP Header: 40000001 0000040f cdbfc00c c
[ 233.538214] pci 0000:41:00.1: AER: can't recover (no error_detected callback)
[ 233.538401] igb 0000:41:00.0: removed PHC on enp65s0f0
[ 233.546197] pcieport 0000:40:01.0: AER: device recovery failed
[ 234.157244] igb 0000:41:00.0: IOV Disabled
[ 371.619705] INFO: task irq/35-aerdrv:257 blocked for more than 122 seconds.
[ 371.627489] Not tainted 6.4.0-dirty #2
[ 371.632257] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this.
[ 371.641000] task:irq/35-aerdrv state:D stack:0 pid:257 ppid:2 f0
[ 371.650330] Call Trace:
[ 371.653061] <TASK>
[ 371.655407] __schedule+0x20e/0x660
[ 371.659313] schedule+0x5a/0xd0
[ 371.662824] schedule_preempt_disabled+0x11/0x20
[ 371.667983] __mutex_lock.constprop.0+0x372/0x6c0
[ 371.673237] ? __pfx_aer_root_reset+0x10/0x10
[ 371.678105] report_error_detected+0x25/0x1c0
[ 371.682974] ? __pfx_report_normal_detected+0x10/0x10
[ 371.688618] pci_walk_bus+0x72/0x90
[ 371.692519] pcie_do_recovery+0xb2/0x330
[ 371.696899] aer_process_err_devices+0x117/0x170
[ 371.702055] aer_isr+0x1c0/0x1e0
[ 371.705661] ? __set_cpus_allowed_ptr+0x54/0xa0
[ 371.710723] ? __pfx_irq_thread_fn+0x10/0x10
[ 371.715496] irq_thread_fn+0x20/0x60
[ 371.719491] irq_thread+0xe6/0x1b0
[ 371.723291] ? __pfx_irq_thread_dtor+0x10/0x10
[ 371.728255] ? __pfx_irq_thread+0x10/0x10
[ 371.732731] kthread+0xe2/0x110
[ 371.736243] ? __pfx_kthread+0x10/0x10
[ 371.740430] ret_from_fork+0x2c/0x50
[ 371.744428] </TASK>
The reproducer was a simple script:
#!/bin/sh
for i in `seq 1 5`; do
modprobe -rv igb
modprobe -v igb max_vfs=1
sleep 1
modprobe -rv igb
done
It turned out that this could only be reproduce on 82580 (quad and
dual-port), but not on 82576, i350 and i210. Further debugging showed
that igb_enable_sriov()'s call to pci_enable_sriov() is failing, because
dev->is_physfn is 0 on 82580.
Prior to commit 50f303496d92 ("igb: Enable SR-IOV after reinit"),
igb_enable_sriov() jumped into the "err_out" cleanup branch. After this
commit it only returned the error code.
So the cleanup didn't take place, and the incorrect VF setup in the
igb_adapter structure fooled the igb driver into assuming that VFs have
been set up where no VF actually existed.
Fix this problem by cleaning up again if pci_enable_sriov() fails. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: wed: use proper wed reference in mt76 wed driver callabacks
MT7996 driver can use both wed and wed_hif2 devices to offload traffic
from/to the wireless NIC. In the current codebase we assume to always
use the primary wed device in wed callbacks resulting in the following
crash if the hw runs wed_hif2 (e.g. 6GHz link).
[ 297.455876] Unable to handle kernel read from unreadable memory at virtual address 000000000000080a
[ 297.464928] Mem abort info:
[ 297.467722] ESR = 0x0000000096000005
[ 297.471461] EC = 0x25: DABT (current EL), IL = 32 bits
[ 297.476766] SET = 0, FnV = 0
[ 297.479809] EA = 0, S1PTW = 0
[ 297.482940] FSC = 0x05: level 1 translation fault
[ 297.487809] Data abort info:
[ 297.490679] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000
[ 297.496156] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 297.501196] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 297.506500] user pgtable: 4k pages, 39-bit VAs, pgdp=0000000107480000
[ 297.512927] [000000000000080a] pgd=08000001097fb003, p4d=08000001097fb003, pud=08000001097fb003, pmd=0000000000000000
[ 297.523532] Internal error: Oops: 0000000096000005 [#1] SMP
[ 297.715393] CPU: 2 UID: 0 PID: 45 Comm: kworker/u16:2 Tainted: G O 6.12.50 #0
[ 297.723908] Tainted: [O]=OOT_MODULE
[ 297.727384] Hardware name: Banana Pi BPI-R4 (2x SFP+) (DT)
[ 297.732857] Workqueue: nf_ft_offload_del nf_flow_rule_route_ipv6 [nf_flow_table]
[ 297.740254] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 297.747205] pc : mt76_wed_offload_disable+0x64/0xa0 [mt76]
[ 297.752688] lr : mtk_wed_flow_remove+0x58/0x80
[ 297.757126] sp : ffffffc080fe3ae0
[ 297.760430] x29: ffffffc080fe3ae0 x28: ffffffc080fe3be0 x27: 00000000deadbef7
[ 297.767557] x26: ffffff80c5ebca00 x25: 0000000000000001 x24: ffffff80c85f4c00
[ 297.774683] x23: ffffff80c1875b78 x22: ffffffc080d42cd0 x21: ffffffc080660018
[ 297.781809] x20: ffffff80c6a076d0 x19: ffffff80c6a043c8 x18: 0000000000000000
[ 297.788935] x17: 0000000000000000 x16: 0000000000000001 x15: 0000000000000000
[ 297.796060] x14: 0000000000000019 x13: ffffff80c0ad8ec0 x12: 00000000fa83b2da
[ 297.803185] x11: ffffff80c02700c0 x10: ffffff80c0ad8ec0 x9 : ffffff81fef96200
[ 297.810311] x8 : ffffff80c02700c0 x7 : ffffff80c02700d0 x6 : 0000000000000002
[ 297.817435] x5 : 0000000000000400 x4 : 0000000000000000 x3 : 0000000000000000
[ 297.824561] x2 : 0000000000000001 x1 : 0000000000000800 x0 : ffffff80c6a063c8
[ 297.831686] Call trace:
[ 297.834123] mt76_wed_offload_disable+0x64/0xa0 [mt76]
[ 297.839254] mtk_wed_flow_remove+0x58/0x80
[ 297.843342] mtk_flow_offload_cmd+0x434/0x574
[ 297.847689] mtk_wed_setup_tc_block_cb+0x30/0x40
[ 297.852295] nf_flow_offload_ipv6_hook+0x7f4/0x964 [nf_flow_table]
[ 297.858466] nf_flow_rule_route_ipv6+0x438/0x4a4 [nf_flow_table]
[ 297.864463] process_one_work+0x174/0x300
[ 297.868465] worker_thread+0x278/0x430
[ 297.872204] kthread+0xd8/0xdc
[ 297.875251] ret_from_fork+0x10/0x20
[ 297.878820] Code: 928b5ae0 8b000273 91400a60 f943fa61 (79401421)
[ 297.884901] ---[ end trace 0000000000000000 ]---
Fix the issue detecting the proper wed reference to use running wed
callabacks. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: limit the level of fs stacking for file-backed mounts
Otherwise, it could cause potential kernel stack overflow (e.g., EROFS
mounting itself). |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: mediatek: common: Fix refcount leak in parse_dai_link_info
Add missing of_node_put()s before the returns to balance
of_node_get()s and of_node_put()s, which may get unbalanced
in case the for loop 'for_each_available_child_of_node' returns
early. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix NULL pointer dereference on fastopen early fallback
In case of early fallback to TCP, subflow_syn_recv_sock() deletes
the subflow context before returning the newly allocated sock to
the caller.
The fastopen path does not cope with the above unconditionally
dereferencing the subflow context. |
| In the Linux kernel, the following vulnerability has been resolved:
coresight: tmc: add the handle of the event to the path
The handle is essential for retrieving the AUX_EVENT of each CPU and is
required in perf mode. It has been added to the coresight_path so that
dependent devices can access it from the path when needed.
The existing bug can be reproduced with:
perf record -e cs_etm//k -C 0-9 dd if=/dev/zero of=/dev/null
Showing an oops as follows:
Unable to handle kernel paging request at virtual address 000f6e84934ed19e
Call trace:
tmc_etr_get_buffer+0x30/0x80 [coresight_tmc] (P)
catu_enable_hw+0xbc/0x3d0 [coresight_catu]
catu_enable+0x70/0xe0 [coresight_catu]
coresight_enable_path+0xb0/0x258 [coresight] |
| In the Linux kernel, the following vulnerability has been resolved:
ubi: Fix possible null-ptr-deref in ubi_free_volume()
It willl cause null-ptr-deref in the following case:
uif_init()
ubi_add_volume()
cdev_add() -> if it fails, call kill_volumes()
device_register()
kill_volumes() -> if ubi_add_volume() fails call this function
ubi_free_volume()
cdev_del()
device_unregister() -> trying to delete a not added device,
it causes null-ptr-deref
So in ubi_free_volume(), it delete devices whether they are added
or not, it will causes null-ptr-deref.
Handle the error case whlie calling ubi_add_volume() to fix this
problem. If add volume fails, set the corresponding vol to null,
so it can not be accessed in kill_volumes() and release the
resource in ubi_add_volume() error path. |
| In the Linux kernel, the following vulnerability has been resolved:
ns: initialize ns_list_node for initial namespaces
Make sure that the list is always initialized for initial namespaces. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix stackmap overflow check in __bpf_get_stackid()
Syzkaller reported a KASAN slab-out-of-bounds write in __bpf_get_stackid()
when copying stack trace data. The issue occurs when the perf trace
contains more stack entries than the stack map bucket can hold,
leading to an out-of-bounds write in the bucket's data array. |
| In the Linux kernel, the following vulnerability has been resolved:
ntfs3: fix uninit memory after failed mi_read in mi_format_new
Fix a KMSAN un-init bug found by syzkaller.
ntfs_get_bh() expects a buffer from sb_getblk(), that buffer may not be
uptodate. We do not bring the buffer uptodate before setting it as
uptodate. If the buffer were to not be uptodate, it could mean adding a
buffer with un-init data to the mi record. Attempting to load that record
will trigger KMSAN.
Avoid this by setting the buffer as uptodate, if it’s not already, by
overwriting it. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix incorrect splitting in btrfs_drop_extent_map_range
In production we were seeing a variety of WARN_ON()'s in the extent_map
code, specifically in btrfs_drop_extent_map_range() when we have to call
add_extent_mapping() for our second split.
Consider the following extent map layout
PINNED
[0 16K) [32K, 48K)
and then we call btrfs_drop_extent_map_range for [0, 36K), with
skip_pinned == true. The initial loop will have
start = 0
end = 36K
len = 36K
we will find the [0, 16k) extent, but since we are pinned we will skip
it, which has this code
start = em_end;
if (end != (u64)-1)
len = start + len - em_end;
em_end here is 16K, so now the values are
start = 16K
len = 16K + 36K - 16K = 36K
len should instead be 20K. This is a problem when we find the next
extent at [32K, 48K), we need to split this extent to leave [36K, 48k),
however the code for the split looks like this
split->start = start + len;
split->len = em_end - (start + len);
In this case we have
em_end = 48K
split->start = 16K + 36K // this should be 16K + 20K
split->len = 48K - (16K + 36K) // this overflows as 16K + 36K is 52K
and now we have an invalid extent_map in the tree that potentially
overlaps other entries in the extent map. Even in the non-overlapping
case we will have split->start set improperly, which will cause problems
with any block related calculations.
We don't actually need len in this loop, we can simply use end as our
end point, and only adjust start up when we find a pinned extent we need
to skip.
Adjust the logic to do this, which keeps us from inserting an invalid
extent map.
We only skip_pinned in the relocation case, so this is relatively rare,
except in the case where you are running relocation a lot, which can
happen with auto relocation on. |
| In the Linux kernel, the following vulnerability has been resolved:
ntfs3: Fix uninit buffer allocated by __getname()
Fix uninit errors caused after buffer allocation given to 'de'; by
initializing the buffer with zeroes. The fix was found by using KMSAN. |
| In the Linux kernel, the following vulnerability has been resolved:
smack: fix bug: unprivileged task can create labels
If an unprivileged task is allowed to relabel itself
(/smack/relabel-self is not empty),
it can freely create new labels by writing their
names into own /proc/PID/attr/smack/current
This occurs because do_setattr() imports
the provided label in advance,
before checking "relabel-self" list.
This change ensures that the "relabel-self" list
is checked before importing the label. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: qcom-adm: fix wrong calling convention for prep_slave_sg
The calling convention for pre_slave_sg is to return NULL on error and
provide an error log to the system. Qcom-adm instead provide error
pointer when an error occur. This indirectly cause kernel panic for
example for the nandc driver that checks only if the pointer returned by
device_prep_slave_sg is not NULL. Returning an error pointer makes nandc
think the device_prep_slave_sg function correctly completed and makes
the kernel panics later in the code.
While nandc is the one that makes the kernel crash, it was pointed out
that the real problem is qcom-adm not following calling convention for
that function.
To fix this, drop returning error pointer and return NULL with an error
log. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Fix possible use-after-free in async command interface
mlx5_cmd_cleanup_async_ctx should return only after all its callback
handlers were completed. Before this patch, the below race between
mlx5_cmd_cleanup_async_ctx and mlx5_cmd_exec_cb_handler was possible and
lead to a use-after-free:
1. mlx5_cmd_cleanup_async_ctx is called while num_inflight is 2 (i.e.
elevated by 1, a single inflight callback).
2. mlx5_cmd_cleanup_async_ctx decreases num_inflight to 1.
3. mlx5_cmd_exec_cb_handler is called, decreases num_inflight to 0 and
is about to call wake_up().
4. mlx5_cmd_cleanup_async_ctx calls wait_event, which returns
immediately as the condition (num_inflight == 0) holds.
5. mlx5_cmd_cleanup_async_ctx returns.
6. The caller of mlx5_cmd_cleanup_async_ctx frees the mlx5_async_ctx
object.
7. mlx5_cmd_exec_cb_handler goes on and calls wake_up() on the freed
object.
Fix it by syncing using a completion object. Mark it completed when
num_inflight reaches 0.
Trace:
BUG: KASAN: use-after-free in do_raw_spin_lock+0x23d/0x270
Read of size 4 at addr ffff888139cd12f4 by task swapper/5/0
CPU: 5 PID: 0 Comm: swapper/5 Not tainted 6.0.0-rc3_for_upstream_debug_2022_08_30_13_10 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Call Trace:
<IRQ>
dump_stack_lvl+0x57/0x7d
print_report.cold+0x2d5/0x684
? do_raw_spin_lock+0x23d/0x270
kasan_report+0xb1/0x1a0
? do_raw_spin_lock+0x23d/0x270
do_raw_spin_lock+0x23d/0x270
? rwlock_bug.part.0+0x90/0x90
? __delete_object+0xb8/0x100
? lock_downgrade+0x6e0/0x6e0
_raw_spin_lock_irqsave+0x43/0x60
? __wake_up_common_lock+0xb9/0x140
__wake_up_common_lock+0xb9/0x140
? __wake_up_common+0x650/0x650
? destroy_tis_callback+0x53/0x70 [mlx5_core]
? kasan_set_track+0x21/0x30
? destroy_tis_callback+0x53/0x70 [mlx5_core]
? kfree+0x1ba/0x520
? do_raw_spin_unlock+0x54/0x220
mlx5_cmd_exec_cb_handler+0x136/0x1a0 [mlx5_core]
? mlx5_cmd_cleanup_async_ctx+0x220/0x220 [mlx5_core]
? mlx5_cmd_cleanup_async_ctx+0x220/0x220 [mlx5_core]
mlx5_cmd_comp_handler+0x65a/0x12b0 [mlx5_core]
? dump_command+0xcc0/0xcc0 [mlx5_core]
? lockdep_hardirqs_on_prepare+0x400/0x400
? cmd_comp_notifier+0x7e/0xb0 [mlx5_core]
cmd_comp_notifier+0x7e/0xb0 [mlx5_core]
atomic_notifier_call_chain+0xd7/0x1d0
mlx5_eq_async_int+0x3ce/0xa20 [mlx5_core]
atomic_notifier_call_chain+0xd7/0x1d0
? irq_release+0x140/0x140 [mlx5_core]
irq_int_handler+0x19/0x30 [mlx5_core]
__handle_irq_event_percpu+0x1f2/0x620
handle_irq_event+0xb2/0x1d0
handle_edge_irq+0x21e/0xb00
__common_interrupt+0x79/0x1a0
common_interrupt+0x78/0xa0
</IRQ>
<TASK>
asm_common_interrupt+0x22/0x40
RIP: 0010:default_idle+0x42/0x60
Code: c1 83 e0 07 48 c1 e9 03 83 c0 03 0f b6 14 11 38 d0 7c 04 84 d2 75 14 8b 05 eb 47 22 02 85 c0 7e 07 0f 00 2d e0 9f 48 00 fb f4 <c3> 48 c7 c7 80 08 7f 85 e8 d1 d3 3e fe eb de 66 66 2e 0f 1f 84 00
RSP: 0018:ffff888100dbfdf0 EFLAGS: 00000242
RAX: 0000000000000001 RBX: ffffffff84ecbd48 RCX: 1ffffffff0afe110
RDX: 0000000000000004 RSI: 0000000000000000 RDI: ffffffff835cc9bc
RBP: 0000000000000005 R08: 0000000000000001 R09: ffff88881dec4ac3
R10: ffffed1103bd8958 R11: 0000017d0ca571c9 R12: 0000000000000005
R13: ffffffff84f024e0 R14: 0000000000000000 R15: dffffc0000000000
? default_idle_call+0xcc/0x450
default_idle_call+0xec/0x450
do_idle+0x394/0x450
? arch_cpu_idle_exit+0x40/0x40
? do_idle+0x17/0x450
cpu_startup_entry+0x19/0x20
start_secondary+0x221/0x2b0
? set_cpu_sibling_map+0x2070/0x2070
secondary_startup_64_no_verify+0xcd/0xdb
</TASK>
Allocated by task 49502:
kasan_save_stack+0x1e/0x40
__kasan_kmalloc+0x81/0xa0
kvmalloc_node+0x48/0xe0
mlx5e_bulk_async_init+0x35/0x110 [mlx5_core]
mlx5e_tls_priv_tx_list_cleanup+0x84/0x3e0 [mlx5_core]
mlx5e_ktls_cleanup_tx+0x38f/0x760 [mlx5_core]
mlx5e_cleanup_nic_tx+0xa7/0x100 [mlx5_core]
mlx5e_detach_netdev+0x1c
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
s390/lcs: Fix return type of lcs_start_xmit()
With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG),
indirect call targets are validated against the expected function
pointer prototype to make sure the call target is valid to help mitigate
ROP attacks. If they are not identical, there is a failure at run time,
which manifests as either a kernel panic or thread getting killed. A
proposed warning in clang aims to catch these at compile time, which
reveals:
drivers/s390/net/lcs.c:2090:21: error: incompatible function pointer types initializing 'netdev_tx_t (*)(struct sk_buff *, struct net_device *)' (aka 'enum netdev_tx (*)(struct sk_buff *, struct net_device *)') with an expression of type 'int (struct sk_buff *, struct net_device *)' [-Werror,-Wincompatible-function-pointer-types-strict]
.ndo_start_xmit = lcs_start_xmit,
^~~~~~~~~~~~~~
drivers/s390/net/lcs.c:2097:21: error: incompatible function pointer types initializing 'netdev_tx_t (*)(struct sk_buff *, struct net_device *)' (aka 'enum netdev_tx (*)(struct sk_buff *, struct net_device *)') with an expression of type 'int (struct sk_buff *, struct net_device *)' [-Werror,-Wincompatible-function-pointer-types-strict]
.ndo_start_xmit = lcs_start_xmit,
^~~~~~~~~~~~~~
->ndo_start_xmit() in 'struct net_device_ops' expects a return type of
'netdev_tx_t', not 'int'. Adjust the return type of lcs_start_xmit() to
match the prototype's to resolve the warning and potential CFI failure,
should s390 select ARCH_SUPPORTS_CFI_CLANG in the future. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: idmouse: fix an uninit-value in idmouse_open
In idmouse_create_image, if any ftip_command fails, it will
go to the reset label. However, this leads to the data in
bulk_in_buffer[HEADER..IMGSIZE] uninitialized. And the check
for valid image incurs an uninitialized dereference.
Fix this by moving the check before reset label since this
check only be valid if the data after bulk_in_buffer[HEADER]
has concrete data.
Note that this is found by KMSAN, so only kernel compilation
is tested. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: hif_usb: fix memory leak of urbs in ath9k_hif_usb_dealloc_tx_urbs()
Syzkaller reports a long-known leak of urbs in
ath9k_hif_usb_dealloc_tx_urbs().
The cause of the leak is that usb_get_urb() is called but usb_free_urb()
(or usb_put_urb()) is not called inside usb_kill_urb() as urb->dev or
urb->ep fields have not been initialized and usb_kill_urb() returns
immediately.
The patch removes trying to kill urbs located in hif_dev->tx.tx_buf
because hif_dev->tx.tx_buf is not supposed to contain urbs which are in
pending state (the pending urbs are stored in hif_dev->tx.tx_pending).
The tx.tx_lock is acquired so there should not be any changes in the list.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix hard lockup when reading the rx_monitor from debugfs
During I/O and simultaneous cat of /sys/kernel/debug/lpfc/fnX/rx_monitor, a
hard lockup similar to the call trace below may occur.
The spin_lock_bh in lpfc_rx_monitor_report is not protecting from timer
interrupts as expected, so change the strength of the spin lock to _irq.
Kernel panic - not syncing: Hard LOCKUP
CPU: 3 PID: 110402 Comm: cat Kdump: loaded
exception RIP: native_queued_spin_lock_slowpath+91
[IRQ stack]
native_queued_spin_lock_slowpath at ffffffffb814e30b
_raw_spin_lock at ffffffffb89a667a
lpfc_rx_monitor_record at ffffffffc0a73a36 [lpfc]
lpfc_cmf_timer at ffffffffc0abbc67 [lpfc]
__hrtimer_run_queues at ffffffffb8184250
hrtimer_interrupt at ffffffffb8184ab0
smp_apic_timer_interrupt at ffffffffb8a026ba
apic_timer_interrupt at ffffffffb8a01c4f
[End of IRQ stack]
apic_timer_interrupt at ffffffffb8a01c4f
lpfc_rx_monitor_report at ffffffffc0a73c80 [lpfc]
lpfc_rx_monitor_read at ffffffffc0addde1 [lpfc]
full_proxy_read at ffffffffb83e7fc3
vfs_read at ffffffffb833fe71
ksys_read at ffffffffb83402af
do_syscall_64 at ffffffffb800430b
entry_SYSCALL_64_after_hwframe at ffffffffb8a000ad |
| In the Linux kernel, the following vulnerability has been resolved:
staging: media: tegra-video: fix device_node use after free
At probe time this code path is followed:
* tegra_csi_init
* tegra_csi_channels_alloc
* for_each_child_of_node(node, channel) -- iterates over channels
* automatically gets 'channel'
* tegra_csi_channel_alloc()
* saves into chan->of_node a pointer to the channel OF node
* automatically gets and puts 'channel'
* now the node saved in chan->of_node has refcount 0, can disappear
* tegra_csi_channels_init
* iterates over channels
* tegra_csi_channel_init -- uses chan->of_node
After that, chan->of_node keeps storing the node until the device is
removed.
of_node_get() the node and of_node_put() it during teardown to avoid any
risk. |