| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/pwrctrl: Cancel outstanding rescan work when unregistering
It's possible to trigger use-after-free here by:
(a) forcing rescan_work_func() to take a long time and
(b) utilizing a pwrctrl driver that may be unloaded for some reason
Cancel outstanding work to ensure it is finished before we allow our data
structures to be cleaned up.
[bhelgaas: tidy commit log] |
| In the Linux kernel, the following vulnerability has been resolved:
dm: fix dm_blk_report_zones
If dm_get_live_table() returned NULL, dm_put_live_table() was never
called. Also, it is possible that md->zone_revalidate_map will change
while calling this function. Only read it once, so that we are always
using the same value. Otherwise we might miss a call to
dm_put_live_table().
Finally, while md->zone_revalidate_map is set and a process is calling
blk_revalidate_disk_zones() to set up the zone append emulation
resources, it is possible that another process, perhaps triggered by
blkdev_report_zones_ioctl(), will call dm_blk_report_zones(). If
blk_revalidate_disk_zones() fails, these resources can be freed while
the other process is still using them, causing a use-after-free error.
blk_revalidate_disk_zones() will only ever be called when initially
setting up the zone append emulation resources, such as when setting up
a zoned dm-crypt table for the first time. Further table swaps will not
set md->zone_revalidate_map or call blk_revalidate_disk_zones().
However it must be called using the new table (referenced by
md->zone_revalidate_map) and the new queue limits while the DM device is
suspended. dm_blk_report_zones() needs some way to distinguish between a
call from blk_revalidate_disk_zones(), which must be allowed to use
md->zone_revalidate_map to access this not yet activated table, and all
other calls to dm_blk_report_zones(), which should not be allowed while
the device is suspended and cannot use md->zone_revalidate_map, since
the zone resources might be freed by the process currently calling
blk_revalidate_disk_zones().
Solve this by tracking the process that sets md->zone_revalidate_map in
dm_revalidate_zones() and only allowing that process to make use of it
in dm_blk_report_zones(). |
| A flaw was found in PyO3. This vulnerability causes a use-after-free issue, potentially leading to memory corruption or crashes via unsound borrowing from weak Python references. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: avoid using multiple devices with different type
For multiple devices, both primary and extra devices should be the
same type. `erofs_init_device` has already guaranteed that if the
primary is a file-backed device, extra devices should also be
regular files.
However, if the primary is a block device while the extra device
is a file-backed device, `erofs_init_device` will get an ENOTBLK,
which is not treated as an error in `erofs_fc_get_tree`, and that
leads to an UAF:
erofs_fc_get_tree
get_tree_bdev_flags(erofs_fc_fill_super)
erofs_read_superblock
erofs_init_device // sbi->dif0 is not inited yet,
// return -ENOTBLK
deactivate_locked_super
free(sbi)
if (err is -ENOTBLK)
sbi->dif0.file = filp_open() // sbi UAF
So if -ENOTBLK is hitted in `erofs_init_device`, it means the
primary device must be a block device, and the extra device
is not a block device. The error can be converted to -EINVAL. |
| A double-free vulnerability was found in libdwarf. In a multiply-corrupted DWARF object, libdwarf may try to dealloc(free) an allocation twice, potentially causing unpredictable and various results. |
| A use-after-free flaw was found in the __ext4_remount in fs/ext4/super.c in ext4 in the Linux kernel. This flaw allows a local user to cause an information leak problem while freeing the old quota file names before a potential failure, leading to a use-after-free. |
| A flaw was found in the ATA over Ethernet (AoE) driver in the Linux kernel. The aoecmd_cfg_pkts() function improperly updates the refcnt on `struct net_device`, and a use-after-free can be triggered by racing between the free on the struct and the access through the `skbtxq` global queue. This could lead to a denial of service condition or potential code execution. |
| A use-after-free flaw was found in the xorg-x11-server. An X server crash may occur in a very specific and legacy configuration (a multi-screen setup with multiple protocol screens, also known as Zaphod mode) if the pointer is warped from within a window on one screen to the root window of the other screen and if the original window is destroyed followed by another window being destroyed. |
| A heap use-after-free flaw was found in coders/bmp.c in ImageMagick. |
| A flaw has been identified in glibc. In an extremely rare situation, the getaddrinfo function may access memory that has been freed, resulting in an application crash. This issue is only exploitable when a NSS module implements only the _nss_*_gethostbyname2_r and _nss_*_getcanonname_r hooks without implementing the _nss_*_gethostbyname3_r hook. The resolved name should return a large number of IPv6 and IPv4, and the call to the getaddrinfo function should have the AF_INET6 address family with AI_CANONNAME, AI_ALL and AI_V4MAPPED as flags. |
| A flaw was found in the Linux kernel's ksmbd component. A deadlock is triggered by sending multiple concurrent session setup requests, possibly leading to a denial of service. |
| A race condition occurred between the functions lmLogClose and txEnd in JFS, in the Linux Kernel, executed in different threads. This flaw allows a local attacker with normal user privileges to crash the system or leak internal kernel information. |
| This CVE was assigned for a libxml2 issue#1012 but later deemed not valid. Ref.: https://gitlab.gnome.org/GNOME/libxml2/-/issues/1012#note_2608283 |
| A use-after-free vulnerability was found in the ProcRenderAddGlyphs() function of Xorg servers. This issue occurs when AllocateGlyph() is called to store new glyphs sent by the client to the X server, potentially resulting in multiple entries pointing to the same non-refcounted glyphs. Consequently, ProcRenderAddGlyphs() may free a glyph, leading to a use-after-free scenario when the same glyph pointer is subsequently accessed. This flaw allows an authenticated attacker to execute arbitrary code on the system by sending a specially crafted request. |
| A use-after-free flaw was found in the Linux kernel’s Netfilter functionality when adding a rule with NFTA_RULE_CHAIN_ID. This flaw allows a local user to crash or escalate their privileges on the system. |
| A memory leak flaw was found in the Linux kernel’s io_uring functionality in how a user registers a buffer ring with IORING_REGISTER_PBUF_RING, mmap() it, and then frees it. This flaw allows a local user to crash or potentially escalate their privileges on the system. |
| A use-after-free flaw was found in xorg-x11-server-Xvfb. This issue occurs in Xvfb with a very specific and legacy configuration (a multi-screen setup with multiple protocol screens, also known as Zaphod mode). If the pointer is warped from a screen 1 to a screen 0, a use-after-free issue may be triggered during shutdown or reset of the Xvfb server, allowing for possible escalation of privileges or denial of service. |
| A use-after-free issue was addressed with improved memory management. This issue is fixed in macOS Ventura 13.5, iOS 16.6 and iPadOS 16.6, Safari 16.6. Processing maliciously crafted web content may lead to memory corruption. |
| In the Linux kernel, the following vulnerability has been resolved:
binder: fix yet another UAF in binder_devices
Commit e77aff5528a18 ("binderfs: fix use-after-free in binder_devices")
addressed a use-after-free where devices could be released without first
being removed from the binder_devices list. However, there is a similar
path in binder_free_proc() that was missed:
==================================================================
BUG: KASAN: slab-use-after-free in binder_remove_device+0xd4/0x100
Write of size 8 at addr ffff0000c773b900 by task umount/467
CPU: 12 UID: 0 PID: 467 Comm: umount Not tainted 6.15.0-rc7-00138-g57483a362741 #9 PREEMPT
Hardware name: linux,dummy-virt (DT)
Call trace:
binder_remove_device+0xd4/0x100
binderfs_evict_inode+0x230/0x2f0
evict+0x25c/0x5dc
iput+0x304/0x480
dentry_unlink_inode+0x208/0x46c
__dentry_kill+0x154/0x530
[...]
Allocated by task 463:
__kmalloc_cache_noprof+0x13c/0x324
binderfs_binder_device_create.isra.0+0x138/0xa60
binder_ctl_ioctl+0x1ac/0x230
[...]
Freed by task 215:
kfree+0x184/0x31c
binder_proc_dec_tmpref+0x33c/0x4ac
binder_deferred_func+0xc10/0x1108
process_one_work+0x520/0xba4
[...]
==================================================================
Call binder_remove_device() within binder_free_proc() to ensure the
device is removed from the binder_devices list before being kfreed. |
| In the Linux kernel, the following vulnerability has been resolved:
binder: fix use-after-free in binderfs_evict_inode()
Running 'stress-ng --binderfs 16 --timeout 300' under KASAN-enabled
kernel, I've noticed the following:
BUG: KASAN: slab-use-after-free in binderfs_evict_inode+0x1de/0x2d0
Write of size 8 at addr ffff88807379bc08 by task stress-ng-binde/1699
CPU: 0 UID: 0 PID: 1699 Comm: stress-ng-binde Not tainted 6.14.0-rc7-g586de92313fc-dirty #13
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x1c2/0x2a0
? __pfx_dump_stack_lvl+0x10/0x10
? __pfx__printk+0x10/0x10
? __pfx_lock_release+0x10/0x10
? __virt_addr_valid+0x18c/0x540
? __virt_addr_valid+0x469/0x540
print_report+0x155/0x840
? __virt_addr_valid+0x18c/0x540
? __virt_addr_valid+0x469/0x540
? __phys_addr+0xba/0x170
? binderfs_evict_inode+0x1de/0x2d0
kasan_report+0x147/0x180
? binderfs_evict_inode+0x1de/0x2d0
binderfs_evict_inode+0x1de/0x2d0
? __pfx_binderfs_evict_inode+0x10/0x10
evict+0x524/0x9f0
? __pfx_lock_release+0x10/0x10
? __pfx_evict+0x10/0x10
? do_raw_spin_unlock+0x4d/0x210
? _raw_spin_unlock+0x28/0x50
? iput+0x697/0x9b0
__dentry_kill+0x209/0x660
? shrink_kill+0x8d/0x2c0
shrink_kill+0xa9/0x2c0
shrink_dentry_list+0x2e0/0x5e0
shrink_dcache_parent+0xa2/0x2c0
? __pfx_shrink_dcache_parent+0x10/0x10
? __pfx_lock_release+0x10/0x10
? __pfx_do_raw_spin_lock+0x10/0x10
do_one_tree+0x23/0xe0
shrink_dcache_for_umount+0xa0/0x170
generic_shutdown_super+0x67/0x390
kill_litter_super+0x76/0xb0
binderfs_kill_super+0x44/0x90
deactivate_locked_super+0xb9/0x130
cleanup_mnt+0x422/0x4c0
? lockdep_hardirqs_on+0x9d/0x150
task_work_run+0x1d2/0x260
? __pfx_task_work_run+0x10/0x10
resume_user_mode_work+0x52/0x60
syscall_exit_to_user_mode+0x9a/0x120
do_syscall_64+0x103/0x210
? asm_sysvec_apic_timer_interrupt+0x1a/0x20
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0xcac57b
Code: c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 f3 0f 1e fa 31 f6 e9 05 00 00 00 0f 1f 44 00 00 f3 0f 1e fa b8
RSP: 002b:00007ffecf4226a8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
RAX: 0000000000000000 RBX: 00007ffecf422720 RCX: 0000000000cac57b
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 00007ffecf422850
RBP: 00007ffecf422850 R08: 0000000028d06ab1 R09: 7fffffffffffffff
R10: 3fffffffffffffff R11: 0000000000000246 R12: 00007ffecf422718
R13: 00007ffecf422710 R14: 00007f478f87b658 R15: 00007ffecf422830
</TASK>
Allocated by task 1705:
kasan_save_track+0x3e/0x80
__kasan_kmalloc+0x8f/0xa0
__kmalloc_cache_noprof+0x213/0x3e0
binderfs_binder_device_create+0x183/0xa80
binder_ctl_ioctl+0x138/0x190
__x64_sys_ioctl+0x120/0x1b0
do_syscall_64+0xf6/0x210
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 1705:
kasan_save_track+0x3e/0x80
kasan_save_free_info+0x46/0x50
__kasan_slab_free+0x62/0x70
kfree+0x194/0x440
evict+0x524/0x9f0
do_unlinkat+0x390/0x5b0
__x64_sys_unlink+0x47/0x50
do_syscall_64+0xf6/0x210
entry_SYSCALL_64_after_hwframe+0x77/0x7f
This 'stress-ng' workload causes the concurrent deletions from
'binder_devices' and so requires full-featured synchronization
to prevent list corruption.
I've found this issue independently but pretty sure that syzbot did
the same, so Reported-by: and Closes: should be applicable here as well. |