| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Use after free in V8 in Google Chrome prior to 94.0.4606.71 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. |
| Inappropriate implementation in Memory in Google Chrome prior to 94.0.4606.71 allowed a remote attacker to obtain potentially sensitive information from process memory via a crafted HTML page. |
| Insufficient validation of untrusted input in Intents in Google Chrome on Android prior to 95.0.4638.69 allowed a remote attacker to arbitrarily browser to a malicious URL via a crafted HTML page. |
| An out-of-bounds read was addressed with improved input validation. This issue is fixed in iOS 17.1.2 and iPadOS 17.1.2, macOS Sonoma 14.1.2, Safari 17.1.2. Processing web content may disclose sensitive information. Apple is aware of a report that this issue may have been exploited against versions of iOS before iOS 16.7.1. |
| A memory corruption vulnerability was addressed with improved locking. This issue is fixed in iOS 17.1.2 and iPadOS 17.1.2, macOS Sonoma 14.1.2, Safari 17.1.2. Processing web content may lead to arbitrary code execution. Apple is aware of a report that this issue may have been exploited against versions of iOS before iOS 16.7.1. |
| An out-of-bounds write issue was addressed with improved bounds checking. This issue is fixed in iOS 15.6.1 and iPadOS 15.6.1, macOS Monterey 12.5.1, Safari 15.6.1. Processing maliciously crafted web content may lead to arbitrary code execution. Apple is aware of a report that this issue may have been actively exploited. |
| A type confusion issue was addressed with improved state handling. This issue is fixed in macOS Big Sur 11.2, Security Update 2021-001 Catalina, Security Update 2021-001 Mojave, tvOS 14.4, watchOS 7.3, iOS 14.4 and iPadOS 14.4, Safari 14.0.3. Processing maliciously crafted web content may lead to arbitrary code execution. |
| A logic issue was addressed with improved restrictions. This issue is fixed in macOS Big Sur 11.2, Security Update 2021-001 Catalina, Security Update 2021-001 Mojave, iOS 14.4 and iPadOS 14.4. A remote attacker may be able to cause arbitrary code execution. Apple is aware of a report that this issue may have been actively exploited.. |
| A logic issue was addressed with improved restrictions. This issue is fixed in macOS Big Sur 11.2, Security Update 2021-001 Catalina, Security Update 2021-001 Mojave, iOS 14.4 and iPadOS 14.4. A remote attacker may be able to cause arbitrary code execution. Apple is aware of a report that this issue may have been actively exploited.. |
| The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do not properly handle Heartbeat Extension packets, which allows remote attackers to obtain sensitive information from process memory via crafted packets that trigger a buffer over-read, as demonstrated by reading private keys, related to d1_both.c and t1_lib.c, aka the Heartbleed bug. |
| In Varnish Cache 7.0.0, 7.0.1, 7.0.2, and 7.1.0, it is possible to cause the Varnish Server to assert and automatically restart through forged HTTP/1 backend responses. An attack uses a crafted reason phrase of the backend response status line. This is fixed in 7.0.3 and 7.1.1. |
| Improper Input Validation vulnerability in HTTP/2 request validation of Apache Traffic Server allows an attacker to create smuggle or cache poison attacks. This issue affects Apache Traffic Server 8.0.0 to 9.1.2. |
| pgAdmin <= 8.3 is affected by a path-traversal vulnerability while deserializing users’ sessions in the session handling code. If the server is running on Windows, an unauthenticated attacker can load and deserialize remote pickle objects and gain code execution. If the server is running on POSIX/Linux, an authenticated attacker can upload pickle objects, deserialize them, and gain code execution. |
| pgAdmin <= 8.5 is affected by a multi-factor authentication bypass vulnerability. This vulnerability allows an attacker with knowledge of a legitimate account’s username and password may authenticate to the application and perform sensitive actions within the application, such as managing files and executing SQL queries, regardless of the account’s MFA enrollment status. |
| pgAdmin <= 8.5 is affected by XSS vulnerability in /settings/store API response json payload. This vulnerability allows attackers to execute malicious script at the client end. |
| Improper Input Validation vulnerability in header parsing of Apache Traffic Server allows an attacker to request secure resources. This issue affects Apache Traffic Server 8.0.0 to 9.1.2. |
| c3p0 version < 0.9.5.4 may be exploited by a billion laughs attack when loading XML configuration due to missing protections against recursive entity expansion when loading configuration. |
| A flaw was found in X.Org Server Overlay Window. A Use-After-Free may lead to local privilege escalation. If a client explicitly destroys the compositor overlay window (aka COW), the Xserver would leave a dangling pointer to that window in the CompScreen structure, which will trigger a use-after-free later. |
| A vulnerability was found in X.Org. This security flaw occurs because the XkbCopyNames function left a dangling pointer to freed memory, resulting in out-of-bounds memory access on subsequent XkbGetKbdByName requests.. This issue can lead to local privileges elevation on systems where the X server is running privileged and remote code execution for ssh X forwarding sessions. |
| This flaw makes curl overflow a heap based buffer in the SOCKS5 proxy
handshake.
When curl is asked to pass along the host name to the SOCKS5 proxy to allow
that to resolve the address instead of it getting done by curl itself, the
maximum length that host name can be is 255 bytes.
If the host name is detected to be longer, curl switches to local name
resolving and instead passes on the resolved address only. Due to this bug,
the local variable that means "let the host resolve the name" could get the
wrong value during a slow SOCKS5 handshake, and contrary to the intention,
copy the too long host name to the target buffer instead of copying just the
resolved address there.
The target buffer being a heap based buffer, and the host name coming from the
URL that curl has been told to operate with. |