| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The Birthday attack against 64-bit block ciphers flaw (CVE-2016-2183) was reported for the health checks port (9979) on etcd grpc-proxy component. Even though the CVE-2016-2183 has been fixed in the etcd components, to enable periodic health checks from kubelet, it was necessary to open up a new port (9979) on etcd grpc-proxy, hence this port might be considered as still vulnerable to the same type of vulnerability. The health checks on etcd grpc-proxy do not contain sensitive data (only metrics data), therefore the potential impact related to this vulnerability is minimal. The CVE-2023-0296 has been assigned to this issue to track the permanent fix in the etcd component. |
| A request smuggling attack is possible when using MaxBytesHandler. When using MaxBytesHandler, the body of an HTTP request is not fully consumed. When the server attempts to read HTTP2 frames from the connection, it will instead be reading the body of the HTTP request, which could be attacker-manipulated to represent arbitrary HTTP2 requests. |
| IBM Robotic Process Automation 20.12.0 through 21.0.2 defaults to HTTP in some RPA commands when the prefix is not explicitly specified in the URL. This could allow an attacker to obtain sensitive information using man in the middle techniques. IBM X-Force ID: 244109. |
| IBM Robotic Process Automation for Cloud Pak 20.12.0 through 21.0.4 is vulnerable to cross-site scripting. This vulnerability allows users to embed arbitrary JavaScript code in the Web UI thus altering the intended functionality potentially leading to credentials disclosure within a trusted session. IBM X-Force ID: 244075. |
|
IBM Robotic Process Automation for Cloud Pak 21.0.1 through 21.0.4 could allow a local user to perform unauthorized actions due to insufficient permission settings. IBM X-Force ID: 244073.
|
| In Spring Security, versions 6.1.x prior to 6.1.7 and versions 6.2.x prior to 6.2.2, an application is vulnerable to broken access control when it directly uses the AuthenticationTrustResolver.isFullyAuthenticated(Authentication) method.
Specifically, an application is vulnerable if:
* The application uses AuthenticationTrustResolver.isFullyAuthenticated(Authentication) directly and a null authentication parameter is passed to it resulting in an erroneous true return value.
An application is not vulnerable if any of the following is true:
* The application does not use AuthenticationTrustResolver.isFullyAuthenticated(Authentication) directly.
* The application does not pass null to AuthenticationTrustResolver.isFullyAuthenticated
* The application only uses isFullyAuthenticated via Method Security https://docs.spring.io/spring-security/reference/servlet/authorization/method-security.html or HTTP Request Security https://docs.spring.io/spring-security/reference/servlet/authorization/authorize-http-requests.html |
| A sandbox bypass vulnerability involving map constructors in Jenkins Script Security Plugin 1228.vd93135a_2fb_25 and earlier allows attackers with permission to define and run sandboxed scripts, including Pipelines, to bypass the sandbox protection and execute arbitrary code in the context of the Jenkins controller JVM. |
| A flaw was found in github.com/openshift/apiserver-library-go, used in OpenShift 4.12 and 4.11, that contains an issue that can allow low-privileged users to set the seccomp profile for pods they control to "unconfined." By default, the seccomp profile used in the restricted-v2 Security Context Constraint (SCC) is "runtime/default," allowing users to disable seccomp for pods they can create and modify. |
| Allocation of Resources Without Limits or Throttling vulnerability in Apache Commons Compress.This issue affects Apache Commons Compress: from 1.21 before 1.26.
Users are recommended to upgrade to version 1.26, which fixes the issue. |
| IBM App Connect Enterprise Certified Container 4.1, 4.2, 5.0, 5.1, 5.2, 6.0, 6.1, and 6.2 could disclose sensitive information to an attacker due to a weak hash of an API Key in the configuration. IBM X-Force ID: 241583. |
| IBM Watson Knowledge Catalog on Cloud Pak for Data 4.5.0 is vulnerable to SQL injection. A remote attacker could send specially crafted SQL statements, which could allow the attacker to view, add, modify or delete information in the back-end database. IBM X-Force ID: 237402. |
|
IBM App Connect Enterprise 11.0.0.17 through 11.0.0.19 and 12.0.4.0 and 12.0.5.0 contains an unspecified vulnerability in the Discovery Connector nodes which may cause a 3rd party system’s credentials to be exposed to a privileged attacker. IBM X-Force ID: 238211.
|
| HAProxy before 2.7.3 may allow a bypass of access control because HTTP/1 headers are inadvertently lost in some situations, aka "request smuggling." The HTTP header parsers in HAProxy may accept empty header field names, which could be used to truncate the list of HTTP headers and thus make some headers disappear after being parsed and processed for HTTP/1.0 and HTTP/1.1. For HTTP/2 and HTTP/3, the impact is limited because the headers disappear before being parsed and processed, as if they had not been sent by the client. The fixed versions are 2.7.3, 2.6.9, 2.5.12, 2.4.22, 2.2.29, and 2.0.31. |
| Jenkins Pipeline: Build Step Plugin 2.18 and earlier does not escape job names in a JavaScript expression used in the Pipeline Snippet Generator, resulting in a stored cross-site scripting (XSS) vulnerability exploitable by attackers able to control job names. |
| Jenkins JUnit Plugin 1166.va_436e268e972 and earlier does not escape test case class names in JavaScript expressions, resulting in a stored cross-site scripting (XSS) vulnerability exploitable by attackers able to control test case class names in the JUnit resources processed by the plugin. |
| The Bare Metal Operator (BMO) implements a Kubernetes API for managing bare metal hosts in Metal3. Baremetal Operator enables users to load Secret from arbitrary namespaces upon deployment of the namespace scoped Custom Resource `BMCEventSubscription`. Prior to versions 0.8.1 and 0.9.1, an adversary Kubernetes account with only namespace level roles (e.g. a tenant controlling a namespace) may create a `BMCEventSubscription` in his authorized namespace and then load Secrets from his unauthorized namespaces to his authorized namespace via the Baremetal Operator, causing Secret Leakage. The patch makes BMO refuse to read Secrets from other namespace than where the corresponding BMH resource is. The patch does not change the `BMCEventSubscription` API in BMO, but stricter validation will fail the request at admission time. It will also prevent the controller reading such Secrets, in case the BMCES CR has already been deployed. The issue exists for all versions of BMO, and is patched in BMO releases v0.9.1 and v0.8.1. Prior upgrading to patched BMO version, duplicate any existing Secret pointed to by `BMCEventSubscription`'s `httpHeadersRef` to the same namespace where the corresponding BMH exists. After upgrade, remove the old Secrets. As a workaround, the operator can configure BMO RBAC to be namespace scoped, instead of cluster scoped, to prevent BMO from accessing Secrets from other namespaces, and/or use `WATCH_NAMESPACE` configuration option to limit BMO to single namespace. |
| HashiCorp go-getter up to 1.6.2 and 2.1.1 is vulnerable to decompression bombs. Fixed in 1.7.0 and 2.2.0. |
| Libreswan 4.9 allows remote attackers to cause a denial of service (assert failure and daemon restart) via crafted TS payload with an incorrect selector length. |
| Expr is an expression language and expression evaluation for Go. Prior to version 1.17.0, if the Expr expression parser is given an unbounded input string, it will attempt to compile the entire string and generate an Abstract Syntax Tree (AST) node for each part of the expression. In scenarios where input size isn’t limited, a malicious or inadvertent extremely large expression can consume excessive memory as the parser builds a huge AST. This can ultimately lead to*excessive memory usage and an Out-Of-Memory (OOM) crash of the process. This issue is relatively uncommon and will only manifest when there are no restrictions on the input size, i.e. the expression length is allowed to grow arbitrarily large. In typical use cases where inputs are bounded or validated, this problem would not occur. The problem has been patched in the latest versions of the Expr library. The fix introduces compile-time limits on the number of AST nodes and memory usage during parsing, preventing any single expression from exhausting resources. Users should upgrade to Expr version 1.17.0 or later, as this release includes the new node budget and memory limit safeguards. Upgrading to v1.17.0 ensures that extremely deep or large expressions are detected and safely aborted during compilation, avoiding the OOM condition. For users who cannot immediately upgrade, the recommended workaround is to impose an input size restriction before parsing. In practice, this means validating or limiting the length of expression strings that your application will accept. For example, set a maximum allowable number of characters (or nodes) for any expression and reject or truncate inputs that exceed this limit. By ensuring no unbounded-length expression is ever fed into the parser, one can prevent the parser from constructing a pathologically large AST and avoid potential memory exhaustion. In short, pre-validate and cap input size as a safeguard in the absence of the patch. |
| If errors returned from MarshalJSON methods contain user controlled data, they may be used to break the contextual auto-escaping behavior of the html/template package, allowing for subsequent actions to inject unexpected content into templates. |