Search

Search Results (325352 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-54299 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: typec: bus: verify partner exists in typec_altmode_attention Some usb hubs will negotiate DisplayPort Alt mode with the device but will then negotiate a data role swap after entering the alt mode. The data role swap causes the device to unregister all alt modes, however the usb hub will still send Attention messages even after failing to reregister the Alt Mode. type_altmode_attention currently does not verify whether or not a device's altmode partner exists, which results in a NULL pointer error when dereferencing the typec_altmode and typec_altmode_ops belonging to the altmode partner. Verify the presence of a device's altmode partner before sending the Attention message to the Alt Mode driver.
CVE-2023-54309 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tpm: tpm_vtpm_proxy: fix a race condition in /dev/vtpmx creation /dev/vtpmx is made visible before 'workqueue' is initialized, which can lead to a memory corruption in the worst case scenario. Address this by initializing 'workqueue' as the very first step of the driver initialization.
CVE-2023-54300 1 Linux 1 Linux Kernel 2025-12-31 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: avoid referencing uninit memory in ath9k_wmi_ctrl_rx For the reasons also described in commit b383e8abed41 ("wifi: ath9k: avoid uninit memory read in ath9k_htc_rx_msg()"), ath9k_htc_rx_msg() should validate pkt_len before accessing the SKB. For example, the obtained SKB may have been badly constructed with pkt_len = 8. In this case, the SKB can only contain a valid htc_frame_hdr but after being processed in ath9k_htc_rx_msg() and passed to ath9k_wmi_ctrl_rx() endpoint RX handler, it is expected to have a WMI command header which should be located inside its data payload. Implement sanity checking inside ath9k_wmi_ctrl_rx(). Otherwise, uninit memory can be referenced. Tested on Qualcomm Atheros Communications AR9271 802.11n . Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
CVE-2023-54301 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: serial: 8250_bcm7271: fix leak in `brcmuart_probe` Smatch reports: drivers/tty/serial/8250/8250_bcm7271.c:1120 brcmuart_probe() warn: 'baud_mux_clk' from clk_prepare_enable() not released on lines: 1032. The issue is fixed by using a managed clock.
CVE-2023-54302 1 Linux 1 Linux Kernel 2025-12-31 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/irdma: Fix data race on CQP completion stats CQP completion statistics is read lockesly in irdma_wait_event and irdma_check_cqp_progress while it can be updated in the completion thread irdma_sc_ccq_get_cqe_info on another CPU as KCSAN reports. Make completion statistics an atomic variable to reflect coherent updates to it. This will also avoid load/store tearing logic bug potentially possible by compiler optimizations. [77346.170861] BUG: KCSAN: data-race in irdma_handle_cqp_op [irdma] / irdma_sc_ccq_get_cqe_info [irdma] [77346.171383] write to 0xffff8a3250b108e0 of 8 bytes by task 9544 on cpu 4: [77346.171483] irdma_sc_ccq_get_cqe_info+0x27a/0x370 [irdma] [77346.171658] irdma_cqp_ce_handler+0x164/0x270 [irdma] [77346.171835] cqp_compl_worker+0x1b/0x20 [irdma] [77346.172009] process_one_work+0x4d1/0xa40 [77346.172024] worker_thread+0x319/0x700 [77346.172037] kthread+0x180/0x1b0 [77346.172054] ret_from_fork+0x22/0x30 [77346.172136] read to 0xffff8a3250b108e0 of 8 bytes by task 9838 on cpu 2: [77346.172234] irdma_handle_cqp_op+0xf4/0x4b0 [irdma] [77346.172413] irdma_cqp_aeq_cmd+0x75/0xa0 [irdma] [77346.172592] irdma_create_aeq+0x390/0x45a [irdma] [77346.172769] irdma_rt_init_hw.cold+0x212/0x85d [irdma] [77346.172944] irdma_probe+0x54f/0x620 [irdma] [77346.173122] auxiliary_bus_probe+0x66/0xa0 [77346.173137] really_probe+0x140/0x540 [77346.173154] __driver_probe_device+0xc7/0x220 [77346.173173] driver_probe_device+0x5f/0x140 [77346.173190] __driver_attach+0xf0/0x2c0 [77346.173208] bus_for_each_dev+0xa8/0xf0 [77346.173225] driver_attach+0x29/0x30 [77346.173240] bus_add_driver+0x29c/0x2f0 [77346.173255] driver_register+0x10f/0x1a0 [77346.173272] __auxiliary_driver_register+0xbc/0x140 [77346.173287] irdma_init_module+0x55/0x1000 [irdma] [77346.173460] do_one_initcall+0x7d/0x410 [77346.173475] do_init_module+0x81/0x2c0 [77346.173491] load_module+0x1232/0x12c0 [77346.173506] __do_sys_finit_module+0x101/0x180 [77346.173522] __x64_sys_finit_module+0x3c/0x50 [77346.173538] do_syscall_64+0x39/0x90 [77346.173553] entry_SYSCALL_64_after_hwframe+0x63/0xcd [77346.173634] value changed: 0x0000000000000094 -> 0x0000000000000095
CVE-2023-54303 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Disable preemption in bpf_perf_event_output The nesting protection in bpf_perf_event_output relies on disabled preemption, which is guaranteed for kprobes and tracepoints. However bpf_perf_event_output can be also called from uprobes context through bpf_prog_run_array_sleepable function which disables migration, but keeps preemption enabled. This can cause task to be preempted by another one inside the nesting protection and lead eventually to two tasks using same perf_sample_data buffer and cause crashes like: kernel tried to execute NX-protected page - exploit attempt? (uid: 0) BUG: unable to handle page fault for address: ffffffff82be3eea ... Call Trace: ? __die+0x1f/0x70 ? page_fault_oops+0x176/0x4d0 ? exc_page_fault+0x132/0x230 ? asm_exc_page_fault+0x22/0x30 ? perf_output_sample+0x12b/0x910 ? perf_event_output+0xd0/0x1d0 ? bpf_perf_event_output+0x162/0x1d0 ? bpf_prog_c6271286d9a4c938_krava1+0x76/0x87 ? __uprobe_perf_func+0x12b/0x540 ? uprobe_dispatcher+0x2c4/0x430 ? uprobe_notify_resume+0x2da/0xce0 ? atomic_notifier_call_chain+0x7b/0x110 ? exit_to_user_mode_prepare+0x13e/0x290 ? irqentry_exit_to_user_mode+0x5/0x30 ? asm_exc_int3+0x35/0x40 Fixing this by disabling preemption in bpf_perf_event_output.
CVE-2023-54311 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: fix deadlock when converting an inline directory in nojournal mode In no journal mode, ext4_finish_convert_inline_dir() can self-deadlock by calling ext4_handle_dirty_dirblock() when it already has taken the directory lock. There is a similar self-deadlock in ext4_incvert_inline_data_nolock() for data files which we'll fix at the same time. A simple reproducer demonstrating the problem: mke2fs -Fq -t ext2 -O inline_data -b 4k /dev/vdc 64 mount -t ext4 -o dirsync /dev/vdc /vdc cd /vdc mkdir file0 cd file0 touch file0 touch file1 attr -s BurnSpaceInEA -V abcde . touch supercalifragilisticexpialidocious
CVE-2023-54304 1 Linux 1 Linux Kernel 2025-12-31 N/A
In the Linux kernel, the following vulnerability has been resolved: firmware: meson_sm: fix to avoid potential NULL pointer dereference of_match_device() may fail and returns a NULL pointer. Fix this by checking the return value of of_match_device.
CVE-2023-54305 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: refuse to create ea block when umounted The ea block expansion need to access s_root while it is already set as NULL when umount is triggered. Refuse this request to avoid panic.
CVE-2023-54306 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: tls: avoid hanging tasks on the tx_lock syzbot sent a hung task report and Eric explains that adversarial receiver may keep RWIN at 0 for a long time, so we are not guaranteed to make forward progress. Thread which took tx_lock and went to sleep may not release tx_lock for hours. Use interruptible sleep where possible and reschedule the work if it can't take the lock. Testing: existing selftest passes
CVE-2023-54313 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ovl: fix null pointer dereference in ovl_get_acl_rcu() Following process: P1 P2 path_openat link_path_walk may_lookup inode_permission(rcu) ovl_permission acl_permission_check check_acl get_cached_acl_rcu ovl_get_inode_acl realinode = ovl_inode_real(ovl_inode) drop_cache __dentry_kill(ovl_dentry) iput(ovl_inode) ovl_destroy_inode(ovl_inode) dput(oi->__upperdentry) dentry_kill(upperdentry) dentry_unlink_inode upperdentry->d_inode = NULL ovl_inode_upper upperdentry = ovl_i_dentry_upper(ovl_inode) d_inode(upperdentry) // returns NULL IS_POSIXACL(realinode) // NULL pointer dereference , will trigger an null pointer dereference at realinode: [ 205.472797] BUG: kernel NULL pointer dereference, address: 0000000000000028 [ 205.476701] CPU: 2 PID: 2713 Comm: ls Not tainted 6.3.0-12064-g2edfa098e750-dirty #1216 [ 205.478754] RIP: 0010:do_ovl_get_acl+0x5d/0x300 [ 205.489584] Call Trace: [ 205.489812] <TASK> [ 205.490014] ovl_get_inode_acl+0x26/0x30 [ 205.490466] get_cached_acl_rcu+0x61/0xa0 [ 205.490908] generic_permission+0x1bf/0x4e0 [ 205.491447] ovl_permission+0x79/0x1b0 [ 205.491917] inode_permission+0x15e/0x2c0 [ 205.492425] link_path_walk+0x115/0x550 [ 205.493311] path_lookupat.isra.0+0xb2/0x200 [ 205.493803] filename_lookup+0xda/0x240 [ 205.495747] vfs_fstatat+0x7b/0xb0 Fetch a reproducer in [Link]. Use the helper ovl_i_path_realinode() to get realinode and then do non-nullptr checking.
CVE-2023-54314 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: af9005: Fix null-ptr-deref in af9005_i2c_xfer In af9005_i2c_xfer, msg is controlled by user. When msg[i].buf is null and msg[i].len is zero, former checks on msg[i].buf would be passed. Malicious data finally reach af9005_i2c_xfer. If accessing msg[i].buf[0] without sanity check, null ptr deref would happen. We add check on msg[i].len to prevent crash. Similar commit: commit 0ed554fd769a ("media: dvb-usb: az6027: fix null-ptr-deref in az6027_i2c_xfer()")
CVE-2023-54315 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/powernv/sriov: perform null check on iov before dereferencing iov Currently pointer iov is being dereferenced before the null check of iov which can lead to null pointer dereference errors. Fix this by moving the iov null check before the dereferencing. Detected using cppcheck static analysis: linux/arch/powerpc/platforms/powernv/pci-sriov.c:597:12: warning: Either the condition '!iov' is redundant or there is possible null pointer dereference: iov. [nullPointerRedundantCheck] num_vfs = iov->num_vfs; ^
CVE-2023-54316 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: refscale: Fix uninitalized use of wait_queue_head_t Running the refscale test occasionally crashes the kernel with the following error: [ 8569.952896] BUG: unable to handle page fault for address: ffffffffffffffe8 [ 8569.952900] #PF: supervisor read access in kernel mode [ 8569.952902] #PF: error_code(0x0000) - not-present page [ 8569.952904] PGD c4b048067 P4D c4b049067 PUD c4b04b067 PMD 0 [ 8569.952910] Oops: 0000 [#1] PREEMPT_RT SMP NOPTI [ 8569.952916] Hardware name: Dell Inc. PowerEdge R750/0WMWCR, BIOS 1.2.4 05/28/2021 [ 8569.952917] RIP: 0010:prepare_to_wait_event+0x101/0x190 : [ 8569.952940] Call Trace: [ 8569.952941] <TASK> [ 8569.952944] ref_scale_reader+0x380/0x4a0 [refscale] [ 8569.952959] kthread+0x10e/0x130 [ 8569.952966] ret_from_fork+0x1f/0x30 [ 8569.952973] </TASK> The likely cause is that init_waitqueue_head() is called after the call to the torture_create_kthread() function that creates the ref_scale_reader kthread. Although this init_waitqueue_head() call will very likely complete before this kthread is created and starts running, it is possible that the calling kthread will be delayed between the calls to torture_create_kthread() and init_waitqueue_head(). In this case, the new kthread will use the waitqueue head before it is properly initialized, which is not good for the kernel's health and well-being. The above crash happened here: static inline void __add_wait_queue(...) { : if (!(wq->flags & WQ_FLAG_PRIORITY)) <=== Crash here The offset of flags from list_head entry in wait_queue_entry is -0x18. If reader_tasks[i].wq.head.next is NULL as allocated reader_task structure is zero initialized, the instruction will try to access address 0xffffffffffffffe8, which is exactly the fault address listed above. This commit therefore invokes init_waitqueue_head() before creating the kthread.
CVE-2023-54318 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/smc: use smc_lgr_list.lock to protect smc_lgr_list.list iterate in smcr_port_add While doing smcr_port_add, there maybe linkgroup add into or delete from smc_lgr_list.list at the same time, which may result kernel crash. So, use smc_lgr_list.lock to protect smc_lgr_list.list iterate in smcr_port_add. The crash calltrace show below: BUG: kernel NULL pointer dereference, address: 0000000000000000 PGD 0 P4D 0 Oops: 0000 [#1] SMP NOPTI CPU: 0 PID: 559726 Comm: kworker/0:92 Kdump: loaded Tainted: G Hardware name: Alibaba Cloud Alibaba Cloud ECS, BIOS 449e491 04/01/2014 Workqueue: events smc_ib_port_event_work [smc] RIP: 0010:smcr_port_add+0xa6/0xf0 [smc] RSP: 0000:ffffa5a2c8f67de0 EFLAGS: 00010297 RAX: 0000000000000001 RBX: ffff9935e0650000 RCX: 0000000000000000 RDX: 0000000000000010 RSI: ffff9935e0654290 RDI: ffff9935c8560000 RBP: 0000000000000000 R08: 0000000000000000 R09: ffff9934c0401918 R10: 0000000000000000 R11: ffffffffb4a5c278 R12: ffff99364029aae4 R13: ffff99364029aa00 R14: 00000000ffffffed R15: ffff99364029ab08 FS: 0000000000000000(0000) GS:ffff994380600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000000f06a10003 CR4: 0000000002770ef0 PKRU: 55555554 Call Trace: smc_ib_port_event_work+0x18f/0x380 [smc] process_one_work+0x19b/0x340 worker_thread+0x30/0x370 ? process_one_work+0x340/0x340 kthread+0x114/0x130 ? __kthread_cancel_work+0x50/0x50 ret_from_fork+0x1f/0x30
CVE-2023-54320 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: platform/x86/amd: pmc: Fix memory leak in amd_pmc_stb_debugfs_open_v2() Function amd_pmc_stb_debugfs_open_v2() may be called when the STB debug mechanism enabled. When amd_pmc_send_cmd() fails, the 'buf' needs to be released.
CVE-2023-54321 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: driver core: fix potential null-ptr-deref in device_add() I got the following null-ptr-deref report while doing fault injection test: BUG: kernel NULL pointer dereference, address: 0000000000000058 CPU: 2 PID: 278 Comm: 37-i2c-ds2482 Tainted: G B W N 6.1.0-rc3+ RIP: 0010:klist_put+0x2d/0xd0 Call Trace: <TASK> klist_remove+0xf1/0x1c0 device_release_driver_internal+0x196/0x210 bus_remove_device+0x1bd/0x240 device_add+0xd3d/0x1100 w1_add_master_device+0x476/0x490 [wire] ds2482_probe+0x303/0x3e0 [ds2482] This is how it happened: w1_alloc_dev() // The dev->driver is set to w1_master_driver. memcpy(&dev->dev, device, sizeof(struct device)); device_add() bus_add_device() dpm_sysfs_add() // It fails, calls bus_remove_device. // error path bus_remove_device() // The dev->driver is not null, but driver is not bound. __device_release_driver() klist_remove(&dev->p->knode_driver) <-- It causes null-ptr-deref. // normal path bus_probe_device() // It's not called yet. device_bind_driver() If dev->driver is set, in the error path after calling bus_add_device() in device_add(), bus_remove_device() is called, then the device will be detached from driver. But device_bind_driver() is not called yet, so it causes null-ptr-deref while access the 'knode_driver'. To fix this, set dev->driver to null in the error path before calling bus_remove_device().
CVE-2023-54323 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cxl/pmem: Fix nvdimm registration races A loop of the form: while true; do modprobe cxl_pci; modprobe -r cxl_pci; done ...fails with the following crash signature: BUG: kernel NULL pointer dereference, address: 0000000000000040 [..] RIP: 0010:cxl_internal_send_cmd+0x5/0xb0 [cxl_core] [..] Call Trace: <TASK> cxl_pmem_ctl+0x121/0x240 [cxl_pmem] nvdimm_get_config_data+0xd6/0x1a0 [libnvdimm] nd_label_data_init+0x135/0x7e0 [libnvdimm] nvdimm_probe+0xd6/0x1c0 [libnvdimm] nvdimm_bus_probe+0x7a/0x1e0 [libnvdimm] really_probe+0xde/0x380 __driver_probe_device+0x78/0x170 driver_probe_device+0x1f/0x90 __device_attach_driver+0x85/0x110 bus_for_each_drv+0x7d/0xc0 __device_attach+0xb4/0x1e0 bus_probe_device+0x9f/0xc0 device_add+0x445/0x9c0 nd_async_device_register+0xe/0x40 [libnvdimm] async_run_entry_fn+0x30/0x130 ...namely that the bottom half of async nvdimm device registration runs after the CXL has already torn down the context that cxl_pmem_ctl() needs. Unlike the ACPI NFIT case that benefits from launching multiple nvdimm device registrations in parallel from those listed in the table, CXL is already marked PROBE_PREFER_ASYNCHRONOUS. So provide for a synchronous registration path to preclude this scenario.
CVE-2023-54327 2025-12-31 7.5 High
Tinycontrol LAN Controller 1.58a contains an authentication bypass vulnerability that allows unauthenticated attackers to change admin passwords through a crafted API request. Attackers can exploit the /stm.cgi endpoint with a specially crafted authentication parameter to disable access controls and modify administrative credentials.
CVE-2024-58315 2025-12-31 8.4 High
Tosibox Key Service 3.3.0 contains an unquoted service path vulnerability that allows local non-privileged users to potentially execute code with elevated system privileges. Attackers can exploit the service startup process by inserting malicious code in the system root path, enabling unauthorized code execution during application startup or system reboot.