| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
bridge: mcast: Fix use-after-free during router port configuration
The bridge maintains a global list of ports behind which a multicast
router resides. The list is consulted during forwarding to ensure
multicast packets are forwarded to these ports even if the ports are not
member in the matching MDB entry.
When per-VLAN multicast snooping is enabled, the per-port multicast
context is disabled on each port and the port is removed from the global
router port list:
# ip link add name br1 up type bridge vlan_filtering 1 mcast_snooping 1
# ip link add name dummy1 up master br1 type dummy
# ip link set dev dummy1 type bridge_slave mcast_router 2
$ bridge -d mdb show | grep router
router ports on br1: dummy1
# ip link set dev br1 type bridge mcast_vlan_snooping 1
$ bridge -d mdb show | grep router
However, the port can be re-added to the global list even when per-VLAN
multicast snooping is enabled:
# ip link set dev dummy1 type bridge_slave mcast_router 0
# ip link set dev dummy1 type bridge_slave mcast_router 2
$ bridge -d mdb show | grep router
router ports on br1: dummy1
Since commit 4b30ae9adb04 ("net: bridge: mcast: re-implement
br_multicast_{enable, disable}_port functions"), when per-VLAN multicast
snooping is enabled, multicast disablement on a port will disable the
per-{port, VLAN} multicast contexts and not the per-port one. As a
result, a port will remain in the global router port list even after it
is deleted. This will lead to a use-after-free [1] when the list is
traversed (when adding a new port to the list, for example):
# ip link del dev dummy1
# ip link add name dummy2 up master br1 type dummy
# ip link set dev dummy2 type bridge_slave mcast_router 2
Similarly, stale entries can also be found in the per-VLAN router port
list. When per-VLAN multicast snooping is disabled, the per-{port, VLAN}
contexts are disabled on each port and the port is removed from the
per-VLAN router port list:
# ip link add name br1 up type bridge vlan_filtering 1 mcast_snooping 1 mcast_vlan_snooping 1
# ip link add name dummy1 up master br1 type dummy
# bridge vlan add vid 2 dev dummy1
# bridge vlan global set vid 2 dev br1 mcast_snooping 1
# bridge vlan set vid 2 dev dummy1 mcast_router 2
$ bridge vlan global show dev br1 vid 2 | grep router
router ports: dummy1
# ip link set dev br1 type bridge mcast_vlan_snooping 0
$ bridge vlan global show dev br1 vid 2 | grep router
However, the port can be re-added to the per-VLAN list even when
per-VLAN multicast snooping is disabled:
# bridge vlan set vid 2 dev dummy1 mcast_router 0
# bridge vlan set vid 2 dev dummy1 mcast_router 2
$ bridge vlan global show dev br1 vid 2 | grep router
router ports: dummy1
When the VLAN is deleted from the port, the per-{port, VLAN} multicast
context will not be disabled since multicast snooping is not enabled
on the VLAN. As a result, the port will remain in the per-VLAN router
port list even after it is no longer member in the VLAN. This will lead
to a use-after-free [2] when the list is traversed (when adding a new
port to the list, for example):
# ip link add name dummy2 up master br1 type dummy
# bridge vlan add vid 2 dev dummy2
# bridge vlan del vid 2 dev dummy1
# bridge vlan set vid 2 dev dummy2 mcast_router 2
Fix these issues by removing the port from the relevant (global or
per-VLAN) router port list in br_multicast_port_ctx_deinit(). The
function is invoked during port deletion with the per-port multicast
context and during VLAN deletion with the per-{port, VLAN} multicast
context.
Note that deleting the multicast router timer is not enough as it only
takes care of the temporary multicast router states (1 or 3) and not the
permanent one (2).
[1]
BUG: KASAN: slab-out-of-bounds in br_multicast_add_router.part.0+0x3f1/0x560
Write of size 8 at addr ffff888004a67328 by task ip/384
[...]
Call Trace:
<TASK>
dump_stack
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: Fix use-after-free in vhci_flush()
syzbot reported use-after-free in vhci_flush() without repro. [0]
From the splat, a thread close()d a vhci file descriptor while
its device was being used by iotcl() on another thread.
Once the last fd refcnt is released, vhci_release() calls
hci_unregister_dev(), hci_free_dev(), and kfree() for struct
vhci_data, which is set to hci_dev->dev->driver_data.
The problem is that there is no synchronisation after unlinking
hdev from hci_dev_list in hci_unregister_dev(). There might be
another thread still accessing the hdev which was fetched before
the unlink operation.
We can use SRCU for such synchronisation.
Let's run hci_dev_reset() under SRCU and wait for its completion
in hci_unregister_dev().
Another option would be to restore hci_dev->destruct(), which was
removed in commit 587ae086f6e4 ("Bluetooth: Remove unused
hci-destruct cb"). However, this would not be a good solution, as
we should not run hci_unregister_dev() while there are in-flight
ioctl() requests, which could lead to another data-race KCSAN splat.
Note that other drivers seem to have the same problem, for exmaple,
virtbt_remove().
[0]:
BUG: KASAN: slab-use-after-free in skb_queue_empty_lockless include/linux/skbuff.h:1891 [inline]
BUG: KASAN: slab-use-after-free in skb_queue_purge_reason+0x99/0x360 net/core/skbuff.c:3937
Read of size 8 at addr ffff88807cb8d858 by task syz.1.219/6718
CPU: 1 UID: 0 PID: 6718 Comm: syz.1.219 Not tainted 6.16.0-rc1-syzkaller-00196-g08207f42d3ff #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025
Call Trace:
<TASK>
dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xd2/0x2b0 mm/kasan/report.c:521
kasan_report+0x118/0x150 mm/kasan/report.c:634
skb_queue_empty_lockless include/linux/skbuff.h:1891 [inline]
skb_queue_purge_reason+0x99/0x360 net/core/skbuff.c:3937
skb_queue_purge include/linux/skbuff.h:3368 [inline]
vhci_flush+0x44/0x50 drivers/bluetooth/hci_vhci.c:69
hci_dev_do_reset net/bluetooth/hci_core.c:552 [inline]
hci_dev_reset+0x420/0x5c0 net/bluetooth/hci_core.c:592
sock_do_ioctl+0xd9/0x300 net/socket.c:1190
sock_ioctl+0x576/0x790 net/socket.c:1311
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl+0xf9/0x170 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fcf5b98e929
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fcf5c7b9038 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007fcf5bbb6160 RCX: 00007fcf5b98e929
RDX: 0000000000000000 RSI: 00000000400448cb RDI: 0000000000000009
RBP: 00007fcf5ba10b39 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000000000 R14: 00007fcf5bbb6160 R15: 00007ffd6353d528
</TASK>
Allocated by task 6535:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4359
kmalloc_noprof include/linux/slab.h:905 [inline]
kzalloc_noprof include/linux/slab.h:1039 [inline]
vhci_open+0x57/0x360 drivers/bluetooth/hci_vhci.c:635
misc_open+0x2bc/0x330 drivers/char/misc.c:161
chrdev_open+0x4c9/0x5e0 fs/char_dev.c:414
do_dentry_open+0xdf0/0x1970 fs/open.c:964
vfs_open+0x3b/0x340 fs/open.c:1094
do_open fs/namei.c:3887 [inline]
path_openat+0x2ee5/0x3830 fs/name
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix double invocation of bnxt_ulp_stop()/bnxt_ulp_start()
Before the commit under the Fixes tag below, bnxt_ulp_stop() and
bnxt_ulp_start() were always invoked in pairs. After that commit,
the new bnxt_ulp_restart() can be invoked after bnxt_ulp_stop()
has been called. This may result in the RoCE driver's aux driver
.suspend() method being invoked twice. The 2nd bnxt_re_suspend()
call will crash when it dereferences a NULL pointer:
(NULL ib_device): Handle device suspend call
BUG: kernel NULL pointer dereference, address: 0000000000000b78
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP PTI
CPU: 20 UID: 0 PID: 181 Comm: kworker/u96:5 Tainted: G S 6.15.0-rc1 #4 PREEMPT(voluntary)
Tainted: [S]=CPU_OUT_OF_SPEC
Hardware name: Dell Inc. PowerEdge R730/072T6D, BIOS 2.4.3 01/17/2017
Workqueue: bnxt_pf_wq bnxt_sp_task [bnxt_en]
RIP: 0010:bnxt_re_suspend+0x45/0x1f0 [bnxt_re]
Code: 8b 05 a7 3c 5b f5 48 89 44 24 18 31 c0 49 8b 5c 24 08 4d 8b 2c 24 e8 ea 06 0a f4 48 c7 c6 04 60 52 c0 48 89 df e8 1b ce f9 ff <48> 8b 83 78 0b 00 00 48 8b 80 38 03 00 00 a8 40 0f 85 b5 00 00 00
RSP: 0018:ffffa2e84084fd88 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000001
RDX: 0000000000000000 RSI: ffffffffb4b6b934 RDI: 00000000ffffffff
RBP: ffffa1760954c9c0 R08: 0000000000000000 R09: c0000000ffffdfff
R10: 0000000000000001 R11: ffffa2e84084fb50 R12: ffffa176031ef070
R13: ffffa17609775000 R14: ffffa17603adc180 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffffa17daa397000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000b78 CR3: 00000004aaa30003 CR4: 00000000003706f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
bnxt_ulp_stop+0x69/0x90 [bnxt_en]
bnxt_sp_task+0x678/0x920 [bnxt_en]
? __schedule+0x514/0xf50
process_scheduled_works+0x9d/0x400
worker_thread+0x11c/0x260
? __pfx_worker_thread+0x10/0x10
kthread+0xfe/0x1e0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2b/0x40
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
Check the BNXT_EN_FLAG_ULP_STOPPED flag and do not proceed if the flag
is already set. This will preserve the original symmetrical
bnxt_ulp_stop() and bnxt_ulp_start().
Also, inside bnxt_ulp_start(), clear the BNXT_EN_FLAG_ULP_STOPPED
flag after taking the mutex to avoid any race condition. And for
symmetry, only proceed in bnxt_ulp_start() if the
BNXT_EN_FLAG_ULP_STOPPED is set. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/nouveau: fix a use-after-free in r535_gsp_rpc_push()
The RPC container is released after being passed to r535_gsp_rpc_send().
When sending the initial fragment of a large RPC and passing the
caller's RPC container, the container will be freed prematurely. Subsequent
attempts to send remaining fragments will therefore result in a
use-after-free.
Allocate a temporary RPC container for holding the initial fragment of a
large RPC when sending. Free the caller's container when all fragments
are successfully sent.
[ Rebase onto Blackwell changes. - Danilo ] |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Avoid potential ndlp use-after-free in dev_loss_tmo_callbk
Smatch detected a potential use-after-free of an ndlp oject in
dev_loss_tmo_callbk during driver unload or fatal error handling.
Fix by reordering code to avoid potential use-after-free if initial
nodelist reference has been previously removed. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: appletb-kbd: fix slab use-after-free bug in appletb_kbd_probe
In probe appletb_kbd_probe() a "struct appletb_kbd *kbd" is allocated
via devm_kzalloc() to store touch bar keyboard related data.
Later on if backlight_device_get_by_name() finds a backlight device
with name "appletb_backlight" a timer (kbd->inactivity_timer) is setup
with appletb_inactivity_timer() and the timer is armed to run after
appletb_tb_dim_timeout (60) seconds.
A use-after-free is triggered when failure occurs after the timer is
armed. This ultimately means probe failure occurs and as a result the
"struct appletb_kbd *kbd" which is device managed memory is freed.
After 60 seconds the timer will have expired and __run_timers will
attempt to access the timer (kbd->inactivity_timer) however the kdb
structure has been freed causing a use-after free.
[ 71.636938] ==================================================================
[ 71.637915] BUG: KASAN: slab-use-after-free in __run_timers+0x7ad/0x890
[ 71.637915] Write of size 8 at addr ffff8881178c5958 by task swapper/1/0
[ 71.637915]
[ 71.637915] CPU: 1 UID: 0 PID: 0 Comm: swapper/1 Not tainted 6.16.0-rc2-00318-g739a6c93cc75-dirty #12 PREEMPT(voluntary)
[ 71.637915] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
[ 71.637915] Call Trace:
[ 71.637915] <IRQ>
[ 71.637915] dump_stack_lvl+0x53/0x70
[ 71.637915] print_report+0xce/0x670
[ 71.637915] ? __run_timers+0x7ad/0x890
[ 71.637915] kasan_report+0xce/0x100
[ 71.637915] ? __run_timers+0x7ad/0x890
[ 71.637915] __run_timers+0x7ad/0x890
[ 71.637915] ? __pfx___run_timers+0x10/0x10
[ 71.637915] ? update_process_times+0xfc/0x190
[ 71.637915] ? __pfx_update_process_times+0x10/0x10
[ 71.637915] ? _raw_spin_lock_irq+0x80/0xe0
[ 71.637915] ? _raw_spin_lock_irq+0x80/0xe0
[ 71.637915] ? __pfx__raw_spin_lock_irq+0x10/0x10
[ 71.637915] run_timer_softirq+0x141/0x240
[ 71.637915] ? __pfx_run_timer_softirq+0x10/0x10
[ 71.637915] ? __pfx___hrtimer_run_queues+0x10/0x10
[ 71.637915] ? kvm_clock_get_cycles+0x18/0x30
[ 71.637915] ? ktime_get+0x60/0x140
[ 71.637915] handle_softirqs+0x1b8/0x5c0
[ 71.637915] ? __pfx_handle_softirqs+0x10/0x10
[ 71.637915] irq_exit_rcu+0xaf/0xe0
[ 71.637915] sysvec_apic_timer_interrupt+0x6c/0x80
[ 71.637915] </IRQ>
[ 71.637915]
[ 71.637915] Allocated by task 39:
[ 71.637915] kasan_save_stack+0x33/0x60
[ 71.637915] kasan_save_track+0x14/0x30
[ 71.637915] __kasan_kmalloc+0x8f/0xa0
[ 71.637915] __kmalloc_node_track_caller_noprof+0x195/0x420
[ 71.637915] devm_kmalloc+0x74/0x1e0
[ 71.637915] appletb_kbd_probe+0x37/0x3c0
[ 71.637915] hid_device_probe+0x2d1/0x680
[ 71.637915] really_probe+0x1c3/0x690
[ 71.637915] __driver_probe_device+0x247/0x300
[ 71.637915] driver_probe_device+0x49/0x210
[...]
[ 71.637915]
[ 71.637915] Freed by task 39:
[ 71.637915] kasan_save_stack+0x33/0x60
[ 71.637915] kasan_save_track+0x14/0x30
[ 71.637915] kasan_save_free_info+0x3b/0x60
[ 71.637915] __kasan_slab_free+0x37/0x50
[ 71.637915] kfree+0xcf/0x360
[ 71.637915] devres_release_group+0x1f8/0x3c0
[ 71.637915] hid_device_probe+0x315/0x680
[ 71.637915] really_probe+0x1c3/0x690
[ 71.637915] __driver_probe_device+0x247/0x300
[ 71.637915] driver_probe_device+0x49/0x210
[...]
The root cause of the issue is that the timer is not disarmed
on failure paths leading to it remaining active and accessing
freed memory. To fix this call timer_delete_sync() to deactivate
the timer.
Another small issue is that timer_delete_sync is called
unconditionally in appletb_kbd_remove(), fix this by checking
for a valid kbd->backlight_dev before calling timer_delete_sync. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: wcd9375: Fix double free of regulator supplies
Driver gets regulator supplies in probe path with
devm_regulator_bulk_get(), so should not call regulator_bulk_free() in
error and remove paths to avoid double free. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86/amd: pmf: Use device managed allocations
If setting up smart PC fails for any reason then this can lead to
a double free when unloading amd-pmf. This is because dev->buf was
freed but never set to NULL and is again freed in amd_pmf_remove().
To avoid subtle allocation bugs in failures leading to a double free
change all allocations into device managed allocations. |
| In bta_hf_client_cb_init of bta_hf_client_main.cc, there is a possible remote code execution due to a use after free. This could lead to remote code execution with no additional execution privileges needed. User interaction is not needed for exploitation. |
| In the Linux kernel, the following vulnerability has been resolved:
netfs: Fix double put of request
If a netfs request finishes during the pause loop, it will have the ref
that belongs to the IN_PROGRESS flag removed at that point - however, if it
then goes to the final wait loop, that will *also* put the ref because it
sees that the IN_PROGRESS flag is clear and incorrectly assumes that this
happened when it called the collector.
In fact, since IN_PROGRESS is clear, we shouldn't call the collector again
since it's done all the cleanup, such as calling ->ki_complete().
Fix this by making netfs_collect_in_app() just return, indicating that
we're done if IN_PROGRESS is removed. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/gem: Acquire references on GEM handles for framebuffers
A GEM handle can be released while the GEM buffer object is attached
to a DRM framebuffer. This leads to the release of the dma-buf backing
the buffer object, if any. [1] Trying to use the framebuffer in further
mode-setting operations leads to a segmentation fault. Most easily
happens with driver that use shadow planes for vmap-ing the dma-buf
during a page flip. An example is shown below.
[ 156.791968] ------------[ cut here ]------------
[ 156.796830] WARNING: CPU: 2 PID: 2255 at drivers/dma-buf/dma-buf.c:1527 dma_buf_vmap+0x224/0x430
[...]
[ 156.942028] RIP: 0010:dma_buf_vmap+0x224/0x430
[ 157.043420] Call Trace:
[ 157.045898] <TASK>
[ 157.048030] ? show_trace_log_lvl+0x1af/0x2c0
[ 157.052436] ? show_trace_log_lvl+0x1af/0x2c0
[ 157.056836] ? show_trace_log_lvl+0x1af/0x2c0
[ 157.061253] ? drm_gem_shmem_vmap+0x74/0x710
[ 157.065567] ? dma_buf_vmap+0x224/0x430
[ 157.069446] ? __warn.cold+0x58/0xe4
[ 157.073061] ? dma_buf_vmap+0x224/0x430
[ 157.077111] ? report_bug+0x1dd/0x390
[ 157.080842] ? handle_bug+0x5e/0xa0
[ 157.084389] ? exc_invalid_op+0x14/0x50
[ 157.088291] ? asm_exc_invalid_op+0x16/0x20
[ 157.092548] ? dma_buf_vmap+0x224/0x430
[ 157.096663] ? dma_resv_get_singleton+0x6d/0x230
[ 157.101341] ? __pfx_dma_buf_vmap+0x10/0x10
[ 157.105588] ? __pfx_dma_resv_get_singleton+0x10/0x10
[ 157.110697] drm_gem_shmem_vmap+0x74/0x710
[ 157.114866] drm_gem_vmap+0xa9/0x1b0
[ 157.118763] drm_gem_vmap_unlocked+0x46/0xa0
[ 157.123086] drm_gem_fb_vmap+0xab/0x300
[ 157.126979] drm_atomic_helper_prepare_planes.part.0+0x487/0xb10
[ 157.133032] ? lockdep_init_map_type+0x19d/0x880
[ 157.137701] drm_atomic_helper_commit+0x13d/0x2e0
[ 157.142671] ? drm_atomic_nonblocking_commit+0xa0/0x180
[ 157.147988] drm_mode_atomic_ioctl+0x766/0xe40
[...]
[ 157.346424] ---[ end trace 0000000000000000 ]---
Acquiring GEM handles for the framebuffer's GEM buffer objects prevents
this from happening. The framebuffer's cleanup later puts the handle
references.
Commit 1a148af06000 ("drm/gem-shmem: Use dma_buf from GEM object
instance") triggers the segmentation fault easily by using the dma-buf
field more widely. The underlying issue with reference counting has
been present before.
v2:
- acquire the handle instead of the BO (Christian)
- fix comment style (Christian)
- drop the Fixes tag (Christian)
- rename err_ gotos
- add missing Link tag |
| In the Linux kernel, the following vulnerability has been resolved:
net: libwx: remove duplicate page_pool_put_full_page()
page_pool_put_full_page() should only be invoked when freeing Rx buffers
or building a skb if the size is too short. At other times, the pages
need to be reused. So remove the redundant page put. In the original
code, double free pages cause kernel panic:
[ 876.949834] __irq_exit_rcu+0xc7/0x130
[ 876.949836] common_interrupt+0xb8/0xd0
[ 876.949838] </IRQ>
[ 876.949838] <TASK>
[ 876.949840] asm_common_interrupt+0x22/0x40
[ 876.949841] RIP: 0010:cpuidle_enter_state+0xc2/0x420
[ 876.949843] Code: 00 00 e8 d1 1d 5e ff e8 ac f0 ff ff 49 89 c5 0f 1f 44 00 00 31 ff e8 cd fc 5c ff 45 84 ff 0f 85 40 02 00 00 fb 0f 1f 44 00 00 <45> 85 f6 0f 88 84 01 00 00 49 63 d6 48 8d 04 52 48 8d 04 82 49 8d
[ 876.949844] RSP: 0018:ffffaa7340267e78 EFLAGS: 00000246
[ 876.949845] RAX: ffff9e3f135be000 RBX: 0000000000000002 RCX: 0000000000000000
[ 876.949846] RDX: 000000cc2dc4cb7c RSI: ffffffff89ee49ae RDI: ffffffff89ef9f9e
[ 876.949847] RBP: ffff9e378f940800 R08: 0000000000000002 R09: 00000000000000ed
[ 876.949848] R10: 000000000000afc8 R11: ffff9e3e9e5a9b6c R12: ffffffff8a6d8580
[ 876.949849] R13: 000000cc2dc4cb7c R14: 0000000000000002 R15: 0000000000000000
[ 876.949852] ? cpuidle_enter_state+0xb3/0x420
[ 876.949855] cpuidle_enter+0x29/0x40
[ 876.949857] cpuidle_idle_call+0xfd/0x170
[ 876.949859] do_idle+0x7a/0xc0
[ 876.949861] cpu_startup_entry+0x25/0x30
[ 876.949862] start_secondary+0x117/0x140
[ 876.949864] common_startup_64+0x13e/0x148
[ 876.949867] </TASK>
[ 876.949868] ---[ end trace 0000000000000000 ]---
[ 876.949869] ------------[ cut here ]------------
[ 876.949870] list_del corruption, ffffead40445a348->next is NULL
[ 876.949873] WARNING: CPU: 14 PID: 0 at lib/list_debug.c:52 __list_del_entry_valid_or_report+0x67/0x120
[ 876.949875] Modules linked in: snd_hrtimer(E) bnep(E) binfmt_misc(E) amdgpu(E) squashfs(E) vfat(E) loop(E) fat(E) amd_atl(E) snd_hda_codec_realtek(E) intel_rapl_msr(E) snd_hda_codec_generic(E) intel_rapl_common(E) snd_hda_scodec_component(E) snd_hda_codec_hdmi(E) snd_hda_intel(E) edac_mce_amd(E) snd_intel_dspcfg(E) snd_hda_codec(E) snd_hda_core(E) amdxcp(E) kvm_amd(E) snd_hwdep(E) gpu_sched(E) drm_panel_backlight_quirks(E) cec(E) snd_pcm(E) drm_buddy(E) snd_seq_dummy(E) drm_ttm_helper(E) btusb(E) kvm(E) snd_seq_oss(E) btrtl(E) ttm(E) btintel(E) snd_seq_midi(E) btbcm(E) drm_exec(E) snd_seq_midi_event(E) i2c_algo_bit(E) snd_rawmidi(E) bluetooth(E) drm_suballoc_helper(E) irqbypass(E) snd_seq(E) ghash_clmulni_intel(E) sha512_ssse3(E) drm_display_helper(E) aesni_intel(E) snd_seq_device(E) rfkill(E) snd_timer(E) gf128mul(E) drm_client_lib(E) drm_kms_helper(E) snd(E) i2c_piix4(E) joydev(E) soundcore(E) wmi_bmof(E) ccp(E) k10temp(E) i2c_smbus(E) gpio_amdpt(E) i2c_designware_platform(E) gpio_generic(E) sg(E)
[ 876.949914] i2c_designware_core(E) sch_fq_codel(E) parport_pc(E) drm(E) ppdev(E) lp(E) parport(E) fuse(E) nfnetlink(E) ip_tables(E) ext4 crc16 mbcache jbd2 sd_mod sfp mdio_i2c i2c_core txgbe ahci ngbe pcs_xpcs libahci libwx r8169 phylink libata realtek ptp pps_core video wmi
[ 876.949933] CPU: 14 UID: 0 PID: 0 Comm: swapper/14 Kdump: loaded Tainted: G W E 6.16.0-rc2+ #20 PREEMPT(voluntary)
[ 876.949935] Tainted: [W]=WARN, [E]=UNSIGNED_MODULE
[ 876.949936] Hardware name: Micro-Star International Co., Ltd. MS-7E16/X670E GAMING PLUS WIFI (MS-7E16), BIOS 1.90 12/31/2024
[ 876.949936] RIP: 0010:__list_del_entry_valid_or_report+0x67/0x120
[ 876.949938] Code: 00 00 00 48 39 7d 08 0f 85 a6 00 00 00 5b b8 01 00 00 00 5d 41 5c e9 73 0d 93 ff 48 89 fe 48 c7 c7 a0 31 e8 89 e8 59 7c b3 ff <0f> 0b 31 c0 5b 5d 41 5c e9 57 0d 93 ff 48 89 fe 48 c7 c7 c8 31 e8
[ 876.949940] RSP: 0018:ffffaa73405d0c60 EFLAGS: 00010282
[ 876.949941] RAX: 0000000000000000 RBX: ffffead40445a348 RCX: 0000000000000000
[ 876.949942] RDX: 0000000000000105 RSI: 00000
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: do not allow CHAIN_ID to refer to another table
When doing lookups for chains on the same batch by using its ID, a chain
from a different table can be used. If a rule is added to a table but
refers to a chain in a different table, it will be linked to the chain in
table2, but would have expressions referring to objects in table1.
Then, when table1 is removed, the rule will not be removed as its linked to
a chain in table2. When expressions in the rule are processed or removed,
that will lead to a use-after-free.
When looking for chains by ID, use the table that was used for the lookup
by name, and only return chains belonging to that same table. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: do not allow SET_ID to refer to another table
When doing lookups for sets on the same batch by using its ID, a set from a
different table can be used.
Then, when the table is removed, a reference to the set may be kept after
the set is freed, leading to a potential use-after-free.
When looking for sets by ID, use the table that was used for the lookup by
name, and only return sets belonging to that same table.
This fixes CVE-2022-2586, also reported as ZDI-CAN-17470. |
| In the Linux kernel, the following vulnerability has been resolved:
coresight: Clear the connection field properly
coresight devices track their connections (output connections) and
hold a reference to the fwnode. When a device goes away, we walk through
the devices on the coresight bus and make sure that the references
are dropped. This happens both ways:
a) For all output connections from the device, drop the reference to
the target device via coresight_release_platform_data()
b) Iterate over all the devices on the coresight bus and drop the
reference to fwnode if *this* device is the target of the output
connection, via coresight_remove_conns()->coresight_remove_match().
However, the coresight_remove_match() doesn't clear the fwnode field,
after dropping the reference, this causes use-after-free and
additional refcount drops on the fwnode.
e.g., if we have two devices, A and B, with a connection, A -> B.
If we remove B first, B would clear the reference on B, from A
via coresight_remove_match(). But when A is removed, it still has
a connection with fwnode still pointing to B. Thus it tries to drops
the reference in coresight_release_platform_data(), raising the bells
like :
[ 91.990153] ------------[ cut here ]------------
[ 91.990163] refcount_t: addition on 0; use-after-free.
[ 91.990212] WARNING: CPU: 0 PID: 461 at lib/refcount.c:25 refcount_warn_saturate+0xa0/0x144
[ 91.990260] Modules linked in: coresight_funnel coresight_replicator coresight_etm4x(-)
crct10dif_ce coresight ip_tables x_tables ipv6 [last unloaded: coresight_cpu_debug]
[ 91.990398] CPU: 0 PID: 461 Comm: rmmod Tainted: G W T 5.19.0-rc2+ #53
[ 91.990418] Hardware name: ARM LTD ARM Juno Development Platform/ARM Juno Development Platform, BIOS EDK II Feb 1 2019
[ 91.990434] pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 91.990454] pc : refcount_warn_saturate+0xa0/0x144
[ 91.990476] lr : refcount_warn_saturate+0xa0/0x144
[ 91.990496] sp : ffff80000c843640
[ 91.990509] x29: ffff80000c843640 x28: ffff800009957c28 x27: ffff80000c8439a8
[ 91.990560] x26: ffff00097eff1990 x25: ffff8000092b6ad8 x24: ffff00097eff19a8
[ 91.990610] x23: ffff80000c8439a8 x22: 0000000000000000 x21: ffff80000c8439c2
[ 91.990659] x20: 0000000000000000 x19: ffff00097eff1a10 x18: ffff80000ab99c40
[ 91.990708] x17: 0000000000000000 x16: 0000000000000000 x15: ffff80000abf6fa0
[ 91.990756] x14: 000000000000001d x13: 0a2e656572662d72 x12: 657466612d657375
[ 91.990805] x11: 203b30206e6f206e x10: 6f69746964646120 x9 : ffff8000081aba28
[ 91.990854] x8 : 206e6f206e6f6974 x7 : 69646461203a745f x6 : 746e756f63666572
[ 91.990903] x5 : ffff00097648ec58 x4 : 0000000000000000 x3 : 0000000000000027
[ 91.990952] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff00080260ba00
[ 91.991000] Call trace:
[ 91.991012] refcount_warn_saturate+0xa0/0x144
[ 91.991034] kobject_get+0xac/0xb0
[ 91.991055] of_node_get+0x2c/0x40
[ 91.991076] of_fwnode_get+0x40/0x60
[ 91.991094] fwnode_handle_get+0x3c/0x60
[ 91.991116] fwnode_get_nth_parent+0xf4/0x110
[ 91.991137] fwnode_full_name_string+0x48/0xc0
[ 91.991158] device_node_string+0x41c/0x530
[ 91.991178] pointer+0x320/0x3ec
[ 91.991198] vsnprintf+0x23c/0x750
[ 91.991217] vprintk_store+0x104/0x4b0
[ 91.991238] vprintk_emit+0x8c/0x360
[ 91.991257] vprintk_default+0x44/0x50
[ 91.991276] vprintk+0xcc/0xf0
[ 91.991295] _printk+0x68/0x90
[ 91.991315] of_node_release+0x13c/0x14c
[ 91.991334] kobject_put+0x98/0x114
[ 91.991354] of_node_put+0x24/0x34
[ 91.991372] of_fwnode_put+0x40/0x5c
[ 91.991390] fwnode_handle_put+0x38/0x50
[ 91.991411] coresight_release_platform_data+0x74/0xb0 [coresight]
[ 91.991472] coresight_unregister+0x64/0xcc [coresight]
[ 91.991525] etm4_remove_dev+0x64/0x78 [coresight_etm4x]
[ 91.991563] etm4_remove_amba+0x1c/0x2c [coresight_etm4x]
[ 91.991598] amba_remove+0x3c/0x19c
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix KASAN use-after-free Read in compute_effective_progs
Syzbot found a Use After Free bug in compute_effective_progs().
The reproducer creates a number of BPF links, and causes a fault
injected alloc to fail, while calling bpf_link_detach on them.
Link detach triggers the link to be freed by bpf_link_free(),
which calls __cgroup_bpf_detach() and update_effective_progs().
If the memory allocation in this function fails, the function restores
the pointer to the bpf_cgroup_link on the cgroup list, but the memory
gets freed just after it returns. After this, every subsequent call to
update_effective_progs() causes this already deallocated pointer to be
dereferenced in prog_list_length(), and triggers KASAN UAF error.
To fix this issue don't preserve the pointer to the prog or link in the
list, but remove it and replace it with a dummy prog without shrinking
the table. The subsequent call to __cgroup_bpf_detach() or
__cgroup_bpf_detach() will correct it. |
| In the Linux kernel, the following vulnerability has been resolved:
usbnet: Fix linkwatch use-after-free on disconnect
usbnet uses the work usbnet_deferred_kevent() to perform tasks which may
sleep. On disconnect, completion of the work was originally awaited in
->ndo_stop(). But in 2003, that was moved to ->disconnect() by historic
commit "[PATCH] USB: usbnet, prevent exotic rtnl deadlock":
https://git.kernel.org/tglx/history/c/0f138bbfd83c
The change was made because back then, the kernel's workqueue
implementation did not allow waiting for a single work. One had to wait
for completion of *all* work by calling flush_scheduled_work(), and that
could deadlock when waiting for usbnet_deferred_kevent() with rtnl_mutex
held in ->ndo_stop().
The commit solved one problem but created another: It causes a
use-after-free in USB Ethernet drivers aqc111.c, asix_devices.c,
ax88179_178a.c, ch9200.c and smsc75xx.c:
* If the drivers receive a link change interrupt immediately before
disconnect, they raise EVENT_LINK_RESET in their (non-sleepable)
->status() callback and schedule usbnet_deferred_kevent().
* usbnet_deferred_kevent() invokes the driver's ->link_reset() callback,
which calls netif_carrier_{on,off}().
* That in turn schedules the work linkwatch_event().
Because usbnet_deferred_kevent() is awaited after unregister_netdev(),
netif_carrier_{on,off}() may operate on an unregistered netdev and
linkwatch_event() may run after free_netdev(), causing a use-after-free.
In 2010, usbnet was changed to only wait for a single instance of
usbnet_deferred_kevent() instead of *all* work by commit 23f333a2bfaf
("drivers/net: don't use flush_scheduled_work()").
Unfortunately the commit neglected to move the wait back to
->ndo_stop(). Rectify that omission at long last. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: bcd2000: Fix a UAF bug on the error path of probing
When the driver fails in snd_card_register() at probe time, it will free
the 'bcd2k->midi_out_urb' before killing it, which may cause a UAF bug.
The following log can reveal it:
[ 50.727020] BUG: KASAN: use-after-free in bcd2000_input_complete+0x1f1/0x2e0 [snd_bcd2000]
[ 50.727623] Read of size 8 at addr ffff88810fab0e88 by task swapper/4/0
[ 50.729530] Call Trace:
[ 50.732899] bcd2000_input_complete+0x1f1/0x2e0 [snd_bcd2000]
Fix this by adding usb_kill_urb() before usb_free_urb(). |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: fix use-after-free in taprio_dev_notifier
Since taprio’s taprio_dev_notifier() isn’t protected by an
RCU read-side critical section, a race with advance_sched()
can lead to a use-after-free.
Adding rcu_read_lock() inside taprio_dev_notifier() prevents this. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: Fix simplification of devm_spi_register_controller
This reverts commit 59ebbe40fb51 ("spi: simplify
devm_spi_register_controller").
If devm_add_action() fails in devm_add_action_or_reset(),
devm_spi_unregister() will be called, it decreases the
refcount of 'ctlr->dev' to 0, then it will cause uaf in
the drivers that calling spi_put_controller() in error path. |