| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: ti: netcp: Standardize knav_dma_open_channel to return NULL on error
Make knav_dma_open_channel consistently return NULL on error instead
of ERR_PTR. Currently the header include/linux/soc/ti/knav_dma.h
returns NULL when the driver is disabled, but the driver
implementation does not even return NULL or ERR_PTR on failure,
causing inconsistency in the users. This results in a crash in
netcp_free_navigator_resources as followed (trimmed):
Unhandled fault: alignment exception (0x221) at 0xfffffff2
[fffffff2] *pgd=80000800207003, *pmd=82ffda003, *pte=00000000
Internal error: : 221 [#1] SMP ARM
Modules linked in:
CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.17.0-rc7 #1 NONE
Hardware name: Keystone
PC is at knav_dma_close_channel+0x30/0x19c
LR is at netcp_free_navigator_resources+0x2c/0x28c
[... TRIM...]
Call trace:
knav_dma_close_channel from netcp_free_navigator_resources+0x2c/0x28c
netcp_free_navigator_resources from netcp_ndo_open+0x430/0x46c
netcp_ndo_open from __dev_open+0x114/0x29c
__dev_open from __dev_change_flags+0x190/0x208
__dev_change_flags from netif_change_flags+0x1c/0x58
netif_change_flags from dev_change_flags+0x38/0xa0
dev_change_flags from ip_auto_config+0x2c4/0x11f0
ip_auto_config from do_one_initcall+0x58/0x200
do_one_initcall from kernel_init_freeable+0x1cc/0x238
kernel_init_freeable from kernel_init+0x1c/0x12c
kernel_init from ret_from_fork+0x14/0x38
[... TRIM...]
Standardize the error handling by making the function return NULL on
all error conditions. The API is used in just the netcp_core.c so the
impact is limited.
Note, this change, in effect reverts commit 5b6cb43b4d62 ("net:
ethernet: ti: netcp_core: return error while dma channel open issue"),
but provides a less error prone implementation. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: fix memory leak in smb3_fs_context_parse_param error path
Add proper cleanup of ctx->source and fc->source to the
cifs_parse_mount_err error handler. This ensures that memory allocated
for the source strings is correctly freed on all error paths, matching
the cleanup already performed in the success path by
smb3_cleanup_fs_context_contents().
Pointers are also set to NULL after freeing to prevent potential
double-free issues.
This change fixes a memory leak originally detected by syzbot. The
leak occurred when processing Opt_source mount options if an error
happened after ctx->source and fc->source were successfully
allocated but before the function completed.
The specific leak sequence was:
1. ctx->source = smb3_fs_context_fullpath(ctx, '/') allocates memory
2. fc->source = kstrdup(ctx->source, GFP_KERNEL) allocates more memory
3. A subsequent error jumps to cifs_parse_mount_err
4. The old error handler freed passwords but not the source strings,
causing the memory to leak.
This issue was not addressed by commit e8c73eb7db0a ("cifs: client:
fix memory leak in smb3_fs_context_parse_param"), which only fixed
leaks from repeated fsconfig() calls but not this error path.
Patch updated with minor change suggested by kernel test robot |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-multipath: fix lockdep WARN due to partition scan work
Blktests test cases nvme/014, 057 and 058 fail occasionally due to a
lockdep WARN. As reported in the Closes tag URL, the WARN indicates that
a deadlock can happen due to the dependency among disk->open_mutex,
kblockd workqueue completion and partition_scan_work completion.
To avoid the lockdep WARN and the potential deadlock, cut the dependency
by running the partition_scan_work not by kblockd workqueue but by
nvme_wq. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: pegasus-notetaker - fix potential out-of-bounds access
In the pegasus_notetaker driver, the pegasus_probe() function allocates
the URB transfer buffer using the wMaxPacketSize value from
the endpoint descriptor. An attacker can use a malicious USB descriptor
to force the allocation of a very small buffer.
Subsequently, if the device sends an interrupt packet with a specific
pattern (e.g., where the first byte is 0x80 or 0x42),
the pegasus_parse_packet() function parses the packet without checking
the allocated buffer size. This leads to an out-of-bounds memory access. |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: BPF: Disable trampoline for kernel module function trace
The current LoongArch BPF trampoline implementation is incompatible
with tracing functions in kernel modules. This causes several severe
and user-visible problems:
* The `bpf_selftests/module_attach` test fails consistently.
* Kernel lockup when a BPF program is attached to a module function [1].
* Critical kernel modules like WireGuard experience traffic disruption
when their functions are traced with fentry [2].
Given the severity and the potential for other unknown side-effects, it
is safest to disable the feature entirely for now. This patch prevents
the BPF subsystem from allowing trampoline attachments to kernel module
functions on LoongArch.
This is a temporary mitigation until the core issues in the trampoline
code for kernel module handling can be identified and fixed.
[root@fedora bpf]# ./test_progs -a module_attach -v
bpf_testmod.ko is already unloaded.
Loading bpf_testmod.ko...
Successfully loaded bpf_testmod.ko.
test_module_attach:PASS:skel_open 0 nsec
test_module_attach:PASS:set_attach_target 0 nsec
test_module_attach:PASS:set_attach_target_explicit 0 nsec
test_module_attach:PASS:skel_load 0 nsec
libbpf: prog 'handle_fentry': failed to attach: -ENOTSUPP
libbpf: prog 'handle_fentry': failed to auto-attach: -ENOTSUPP
test_module_attach:FAIL:skel_attach skeleton attach failed: -524
Summary: 0/0 PASSED, 0 SKIPPED, 1 FAILED
Successfully unloaded bpf_testmod.ko.
[1]: https://lore.kernel.org/loongarch/CAK3+h2wDmpC-hP4u4pJY8T-yfKyk4yRzpu2LMO+C13FMT58oqQ@mail.gmail.com/
[2]: https://lore.kernel.org/loongarch/CAK3+h2wYcpc+OwdLDUBvg2rF9rvvyc5amfHT-KcFaK93uoELPg@mail.gmail.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
ice: fix PTP cleanup on driver removal in error path
Improve the cleanup on releasing PTP resources in error path.
The error case might happen either at the driver probe and PTP
feature initialization or on PTP restart (errors in reset handling, NVM
update etc). In both cases, calls to PF PTP cleanup (ice_ptp_cleanup_pf
function) and 'ps_lock' mutex deinitialization were missed.
Additionally, ptp clock was not unregistered in the latter case.
Keep PTP state as 'uninitialized' on init to distinguish between error
scenarios and to avoid resource release duplication at driver removal.
The consequence of missing ice_ptp_cleanup_pf call is the following call
trace dumped when ice_adapter object is freed (port list is not empty,
as it is required at this stage):
[ T93022] ------------[ cut here ]------------
[ T93022] WARNING: CPU: 10 PID: 93022 at
ice/ice_adapter.c:67 ice_adapter_put+0xef/0x100 [ice]
...
[ T93022] RIP: 0010:ice_adapter_put+0xef/0x100 [ice]
...
[ T93022] Call Trace:
[ T93022] <TASK>
[ T93022] ? ice_adapter_put+0xef/0x100 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
[ T93022] ? __warn.cold+0xb0/0x10e
[ T93022] ? ice_adapter_put+0xef/0x100 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
[ T93022] ? report_bug+0xd8/0x150
[ T93022] ? handle_bug+0xe9/0x110
[ T93022] ? exc_invalid_op+0x17/0x70
[ T93022] ? asm_exc_invalid_op+0x1a/0x20
[ T93022] ? ice_adapter_put+0xef/0x100 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
[ T93022] pci_device_remove+0x42/0xb0
[ T93022] device_release_driver_internal+0x19f/0x200
[ T93022] driver_detach+0x48/0x90
[ T93022] bus_remove_driver+0x70/0xf0
[ T93022] pci_unregister_driver+0x42/0xb0
[ T93022] ice_module_exit+0x10/0xdb0 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
...
[ T93022] ---[ end trace 0000000000000000 ]---
[ T93022] ice: module unloaded |
| In the Linux kernel, the following vulnerability has been resolved:
timers: Fix NULL function pointer race in timer_shutdown_sync()
There is a race condition between timer_shutdown_sync() and timer
expiration that can lead to hitting a WARN_ON in expire_timers().
The issue occurs when timer_shutdown_sync() clears the timer function
to NULL while the timer is still running on another CPU. The race
scenario looks like this:
CPU0 CPU1
<SOFTIRQ>
lock_timer_base()
expire_timers()
base->running_timer = timer;
unlock_timer_base()
[call_timer_fn enter]
mod_timer()
...
timer_shutdown_sync()
lock_timer_base()
// For now, will not detach the timer but only clear its function to NULL
if (base->running_timer != timer)
ret = detach_if_pending(timer, base, true);
if (shutdown)
timer->function = NULL;
unlock_timer_base()
[call_timer_fn exit]
lock_timer_base()
base->running_timer = NULL;
unlock_timer_base()
...
// Now timer is pending while its function set to NULL.
// next timer trigger
<SOFTIRQ>
expire_timers()
WARN_ON_ONCE(!fn) // hit
...
lock_timer_base()
// Now timer will detach
if (base->running_timer != timer)
ret = detach_if_pending(timer, base, true);
if (shutdown)
timer->function = NULL;
unlock_timer_base()
The problem is that timer_shutdown_sync() clears the timer function
regardless of whether the timer is currently running. This can leave a
pending timer with a NULL function pointer, which triggers the
WARN_ON_ONCE(!fn) check in expire_timers().
Fix this by only clearing the timer function when actually detaching the
timer. If the timer is running, leave the function pointer intact, which is
safe because the timer will be properly detached when it finishes running. |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: fix possible vport_config NULL pointer deref in remove
Attempting to remove the driver will cause a crash in cases where
the vport failed to initialize. Following trace is from an instance where
the driver failed during an attempt to create a VF:
[ 1661.543624] idpf 0000:84:00.7: Device HW Reset initiated
[ 1722.923726] idpf 0000:84:00.7: Transaction timed-out (op:1 cookie:2900 vc_op:1 salt:29 timeout:60000ms)
[ 1723.353263] BUG: kernel NULL pointer dereference, address: 0000000000000028
...
[ 1723.358472] RIP: 0010:idpf_remove+0x11c/0x200 [idpf]
...
[ 1723.364973] Call Trace:
[ 1723.365475] <TASK>
[ 1723.365972] pci_device_remove+0x42/0xb0
[ 1723.366481] device_release_driver_internal+0x1a9/0x210
[ 1723.366987] pci_stop_bus_device+0x6d/0x90
[ 1723.367488] pci_stop_and_remove_bus_device+0x12/0x20
[ 1723.367971] pci_iov_remove_virtfn+0xbd/0x120
[ 1723.368309] sriov_disable+0x34/0xe0
[ 1723.368643] idpf_sriov_configure+0x58/0x140 [idpf]
[ 1723.368982] sriov_numvfs_store+0xda/0x1c0
Avoid the NULL pointer dereference by adding NULL pointer check for
vport_config[i], before freeing user_config.q_coalesce. |
| In the Linux kernel, the following vulnerability has been resolved:
fs: Fix uninitialized 'offp' in statmount_string()
In statmount_string(), most flags assign an output offset pointer (offp)
which is later updated with the string offset. However, the
STATMOUNT_MNT_UIDMAP and STATMOUNT_MNT_GIDMAP cases directly set the
struct fields instead of using offp. This leaves offp uninitialized,
leading to a possible uninitialized dereference when *offp is updated.
Fix it by assigning offp for UIDMAP and GIDMAP as well, keeping the code
path consistent. |
| In the Linux kernel, the following vulnerability has been resolved:
ksm: use range-walk function to jump over holes in scan_get_next_rmap_item
Currently, scan_get_next_rmap_item() walks every page address in a VMA to
locate mergeable pages. This becomes highly inefficient when scanning
large virtual memory areas that contain mostly unmapped regions, causing
ksmd to use large amount of cpu without deduplicating much pages.
This patch replaces the per-address lookup with a range walk using
walk_page_range(). The range walker allows KSM to skip over entire
unmapped holes in a VMA, avoiding unnecessary lookups. This problem was
previously discussed in [1].
Consider the following test program which creates a 32 TiB mapping in the
virtual address space but only populates a single page:
#include <unistd.h>
#include <stdio.h>
#include <sys/mman.h>
/* 32 TiB */
const size_t size = 32ul * 1024 * 1024 * 1024 * 1024;
int main() {
char *area = mmap(NULL, size, PROT_READ | PROT_WRITE,
MAP_NORESERVE | MAP_PRIVATE | MAP_ANON, -1, 0);
if (area == MAP_FAILED) {
perror("mmap() failed\n");
return -1;
}
/* Populate a single page such that we get an anon_vma. */
*area = 0;
/* Enable KSM. */
madvise(area, size, MADV_MERGEABLE);
pause();
return 0;
}
$ ./ksm-sparse &
$ echo 1 > /sys/kernel/mm/ksm/run
Without this patch ksmd uses 100% of the cpu for a long time (more then 1
hour in my test machine) scanning all the 32 TiB virtual address space
that contain only one mapped page. This makes ksmd essentially deadlocked
not able to deduplicate anything of value. With this patch ksmd walks
only the one mapped page and skips the rest of the 32 TiB virtual address
space, making the scan fast using little cpu. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: avoid infinite loop due to incomplete zstd-compressed data
Currently, the decompression logic incorrectly spins if compressed
data is truncated in crafted (deliberately corrupted) images. |
| In the Linux kernel, the following vulnerability has been resolved:
mlx5: Fix default values in create CQ
Currently, CQs without a completion function are assigned the
mlx5_add_cq_to_tasklet function by default. This is problematic since
only user CQs created through the mlx5_ib driver are intended to use
this function.
Additionally, all CQs that will use doorbells instead of polling for
completions must call mlx5_cq_arm. However, the default CQ creation flow
leaves a valid value in the CQ's arm_db field, allowing FW to send
interrupts to polling-only CQs in certain corner cases.
These two factors would allow a polling-only kernel CQ to be triggered
by an EQ interrupt and call a completion function intended only for user
CQs, causing a null pointer exception.
Some areas in the driver have prevented this issue with one-off fixes
but did not address the root cause.
This patch fixes the described issue by adding defaults to the create CQ
flow. It adds a default dummy completion function to protect against
null pointer exceptions, and it sets an invalid command sequence number
by default in kernel CQs to prevent the FW from sending an interrupt to
the CQ until it is armed. User CQs are responsible for their own
initialization values.
Callers of mlx5_core_create_cq are responsible for changing the
completion function and arming the CQ per their needs. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: account for current allocated stack depth in widen_imprecise_scalars()
The usage pattern for widen_imprecise_scalars() looks as follows:
prev_st = find_prev_entry(env, ...);
queued_st = push_stack(...);
widen_imprecise_scalars(env, prev_st, queued_st);
Where prev_st is an ancestor of the queued_st in the explored states
tree. This ancestor is not guaranteed to have same allocated stack
depth as queued_st. E.g. in the following case:
def main():
for i in 1..2:
foo(i) // same callsite, differnt param
def foo(i):
if i == 1:
use 128 bytes of stack
iterator based loop
Here, for a second 'foo' call prev_st->allocated_stack is 128,
while queued_st->allocated_stack is much smaller.
widen_imprecise_scalars() needs to take this into account and avoid
accessing bpf_verifier_state->frame[*]->stack out of bounds. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/guc: Synchronize Dead CT worker with unbind
Cancel and wait for any Dead CT worker to complete before continuing
with device unbinding. Else the worker will end up using resources freed
by the undind operation.
(cherry picked from commit 492671339114e376aaa38626d637a2751cdef263) |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_ct: add seqadj extension for natted connections
Sequence adjustment may be required for FTP traffic with PASV/EPSV modes.
due to need to re-write packet payload (IP, port) on the ftp control
connection. This can require changes to the TCP length and expected
seq / ack_seq.
The easiest way to reproduce this issue is with PASV mode.
Example ruleset:
table inet ftp_nat {
ct helper ftp_helper {
type "ftp" protocol tcp
l3proto inet
}
chain prerouting {
type filter hook prerouting priority 0; policy accept;
tcp dport 21 ct state new ct helper set "ftp_helper"
}
}
table ip nat {
chain prerouting {
type nat hook prerouting priority -100; policy accept;
tcp dport 21 dnat ip prefix to ip daddr map {
192.168.100.1 : 192.168.13.2/32 }
}
chain postrouting {
type nat hook postrouting priority 100 ; policy accept;
tcp sport 21 snat ip prefix to ip saddr map {
192.168.13.2 : 192.168.100.1/32 }
}
}
Note that the ftp helper gets assigned *after* the dnat setup.
The inverse (nat after helper assign) is handled by an existing
check in nf_nat_setup_info() and will not show the problem.
Topoloy:
+-------------------+ +----------------------------------+
| FTP: 192.168.13.2 | <-> | NAT: 192.168.13.3, 192.168.100.1 |
+-------------------+ +----------------------------------+
|
+-----------------------+
| Client: 192.168.100.2 |
+-----------------------+
ftp nat changes do not work as expected in this case:
Connected to 192.168.100.1.
[..]
ftp> epsv
EPSV/EPRT on IPv4 off.
ftp> ls
227 Entering passive mode (192,168,100,1,209,129).
421 Service not available, remote server has closed connection.
Kernel logs:
Missing nfct_seqadj_ext_add() setup call
WARNING: CPU: 1 PID: 0 at net/netfilter/nf_conntrack_seqadj.c:41
[..]
__nf_nat_mangle_tcp_packet+0x100/0x160 [nf_nat]
nf_nat_ftp+0x142/0x280 [nf_nat_ftp]
help+0x4d1/0x880 [nf_conntrack_ftp]
nf_confirm+0x122/0x2e0 [nf_conntrack]
nf_hook_slow+0x3c/0xb0
..
Fix this by adding the required extension when a conntrack helper is assigned
to a connection that has a nat binding. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda/hdmi: Fix breakage at probing nvhdmi-mcp driver
After restructuring and splitting the HDMI codec driver code, each
HDMI codec driver contains the own build_controls and build_pcms ops.
A copy-n-paste error put the wrong entries for nvhdmi-mcp driver; both
build_controls and build_pcms are swapped. Unfortunately both
callbacks have the very same form, and the compiler didn't complain
it, either. This resulted in a NULL dereference because the PCM
instance hasn't been initialized at calling the build_controls
callback.
Fix it by passing the proper entries. |
| In the Linux kernel, the following vulnerability has been resolved:
pmdomain: arm: scmi: Fix genpd leak on provider registration failure
If of_genpd_add_provider_onecell() fails during probe, the previously
created generic power domains are not removed, leading to a memory leak
and potential kernel crash later in genpd_debug_add().
Add proper error handling to unwind the initialized domains before
returning from probe to ensure all resources are correctly released on
failure.
Example crash trace observed without this fix:
| Unable to handle kernel paging request at virtual address fffffffffffffc70
| CPU: 1 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.18.0-rc1 #405 PREEMPT
| Hardware name: ARM LTD ARM Juno Development Platform/ARM Juno Development Platform
| pstate: 00000005 (nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : genpd_debug_add+0x2c/0x160
| lr : genpd_debug_init+0x74/0x98
| Call trace:
| genpd_debug_add+0x2c/0x160 (P)
| genpd_debug_init+0x74/0x98
| do_one_initcall+0xd0/0x2d8
| do_initcall_level+0xa0/0x140
| do_initcalls+0x60/0xa8
| do_basic_setup+0x28/0x40
| kernel_init_freeable+0xe8/0x170
| kernel_init+0x2c/0x140
| ret_from_fork+0x10/0x20 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix lock warning in amdgpu_userq_fence_driver_process
Fix a potential deadlock caused by inconsistent spinlock usage
between interrupt and process contexts in the userq fence driver.
The issue occurs when amdgpu_userq_fence_driver_process() is called
from both:
- Interrupt context: gfx_v11_0_eop_irq() -> amdgpu_userq_fence_driver_process()
- Process context: amdgpu_eviction_fence_suspend_worker() ->
amdgpu_userq_fence_driver_force_completion() -> amdgpu_userq_fence_driver_process()
In interrupt context, the spinlock was acquired without disabling
interrupts, leaving it in {IN-HARDIRQ-W} state. When the same lock
is acquired in process context, the kernel detects inconsistent
locking since the process context acquisition would enable interrupts
while holding a lock previously acquired in interrupt context.
Kernel log shows:
[ 4039.310790] inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage.
[ 4039.310804] kworker/7:2/409 [HC0[0]:SC0[0]:HE1:SE1] takes:
[ 4039.310818] ffff9284e1bed000 (&fence_drv->fence_list_lock){?...}-{3:3},
[ 4039.310993] {IN-HARDIRQ-W} state was registered at:
[ 4039.311004] lock_acquire+0xc6/0x300
[ 4039.311018] _raw_spin_lock+0x39/0x80
[ 4039.311031] amdgpu_userq_fence_driver_process.part.0+0x30/0x180 [amdgpu]
[ 4039.311146] amdgpu_userq_fence_driver_process+0x17/0x30 [amdgpu]
[ 4039.311257] gfx_v11_0_eop_irq+0x132/0x170 [amdgpu]
Fix by using spin_lock_irqsave()/spin_unlock_irqrestore() to properly
manage interrupt state regardless of calling context.
(cherry picked from commit ded3ad780cf97a04927773c4600823b84f7f3cc2) |
| In the Linux kernel, the following vulnerability has been resolved:
sched_ext: Fix unsafe locking in the scx_dump_state()
For built with CONFIG_PREEMPT_RT=y kernels, the dump_lock will be converted
sleepable spinlock and not disable-irq, so the following scenarios occur:
inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage.
irq_work/0/27 [HC0[0]:SC0[0]:HE1:SE1] takes:
(&rq->__lock){?...}-{2:2}, at: raw_spin_rq_lock_nested+0x2b/0x40
{IN-HARDIRQ-W} state was registered at:
lock_acquire+0x1e1/0x510
_raw_spin_lock_nested+0x42/0x80
raw_spin_rq_lock_nested+0x2b/0x40
sched_tick+0xae/0x7b0
update_process_times+0x14c/0x1b0
tick_periodic+0x62/0x1f0
tick_handle_periodic+0x48/0xf0
timer_interrupt+0x55/0x80
__handle_irq_event_percpu+0x20a/0x5c0
handle_irq_event_percpu+0x18/0xc0
handle_irq_event+0xb5/0x150
handle_level_irq+0x220/0x460
__common_interrupt+0xa2/0x1e0
common_interrupt+0xb0/0xd0
asm_common_interrupt+0x2b/0x40
_raw_spin_unlock_irqrestore+0x45/0x80
__setup_irq+0xc34/0x1a30
request_threaded_irq+0x214/0x2f0
hpet_time_init+0x3e/0x60
x86_late_time_init+0x5b/0xb0
start_kernel+0x308/0x410
x86_64_start_reservations+0x1c/0x30
x86_64_start_kernel+0x96/0xa0
common_startup_64+0x13e/0x148
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&rq->__lock);
<Interrupt>
lock(&rq->__lock);
*** DEADLOCK ***
stack backtrace:
CPU: 0 UID: 0 PID: 27 Comm: irq_work/0
Call Trace:
<TASK>
dump_stack_lvl+0x8c/0xd0
dump_stack+0x14/0x20
print_usage_bug+0x42e/0x690
mark_lock.part.44+0x867/0xa70
? __pfx_mark_lock.part.44+0x10/0x10
? string_nocheck+0x19c/0x310
? number+0x739/0x9f0
? __pfx_string_nocheck+0x10/0x10
? __pfx_check_pointer+0x10/0x10
? kvm_sched_clock_read+0x15/0x30
? sched_clock_noinstr+0xd/0x20
? local_clock_noinstr+0x1c/0xe0
__lock_acquire+0xc4b/0x62b0
? __pfx_format_decode+0x10/0x10
? __pfx_string+0x10/0x10
? __pfx___lock_acquire+0x10/0x10
? __pfx_vsnprintf+0x10/0x10
lock_acquire+0x1e1/0x510
? raw_spin_rq_lock_nested+0x2b/0x40
? __pfx_lock_acquire+0x10/0x10
? dump_line+0x12e/0x270
? raw_spin_rq_lock_nested+0x20/0x40
_raw_spin_lock_nested+0x42/0x80
? raw_spin_rq_lock_nested+0x2b/0x40
raw_spin_rq_lock_nested+0x2b/0x40
scx_dump_state+0x3b3/0x1270
? finish_task_switch+0x27e/0x840
scx_ops_error_irq_workfn+0x67/0x80
irq_work_single+0x113/0x260
irq_work_run_list.part.3+0x44/0x70
run_irq_workd+0x6b/0x90
? __pfx_run_irq_workd+0x10/0x10
smpboot_thread_fn+0x529/0x870
? __pfx_smpboot_thread_fn+0x10/0x10
kthread+0x305/0x3f0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x40/0x70
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
This commit therefore use rq_lock_irqsave/irqrestore() to replace
rq_lock/unlock() in the scx_dump_state(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: remove two invalid BUG_ON()s
Those can be triggered trivially by userspace. |