| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| NVIDIA GPU Display Driver R378 contains a vulnerability in the kernel mode layer handler where improper access control may lead to denial of service or possible escalation of privileges. |
| Wi-Fi Protected Access (WPA and WPA2) that supports IEEE 802.11w allows reinstallation of the Integrity Group Temporal Key (IGTK) during the four-way handshake, allowing an attacker within radio range to spoof frames from access points to clients. |
| NVIDIA GPU Display Driver contains a vulnerability in the kernel mode layer handler where an incorrect detection and recovery from an invalid state produced by specific user actions may lead to denial of service. |
| Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Tunneled Direct-Link Setup (TDLS) Peer Key (TPK) during the TDLS handshake, allowing an attacker within radio range to replay, decrypt, or spoof frames. |
| Wi-Fi Protected Access (WPA and WPA2) that supports IEEE 802.11w allows reinstallation of the Integrity Group Temporal Key (IGTK) during the group key handshake, allowing an attacker within radio range to spoof frames from access points to clients. |
| ntpd in NTP before 4.2.8p6 and 4.3.x before 4.3.90 allows remote attackers to cause a denial of service (NULL pointer dereference) via a ntpdc reslist command. |
| Wi-Fi Protected Access (WPA and WPA2) that supports IEEE 802.11r allows reinstallation of the Pairwise Transient Key (PTK) Temporal Key (TK) during the fast BSS transmission (FT) handshake, allowing an attacker within radio range to replay, decrypt, or spoof frames. |
| The inet module in FreeBSD 10.2x before 10.2-PRERELEASE, 10.2-BETA2-p2, 10.2-RC1-p1, 10.1x before 10.1-RELEASE-p16, 9.x before 9.3-STABLE, 9.3-RELEASE-p21, and 8.x before 8.4-STABLE, 8.4-RELEASE-p35 on systems with VNET enabled and at least 16 VNET instances allows remote attackers to cause a denial of service (mbuf consumption) via multiple concurrent TCP connections. |
| All versions of NVIDIA Linux GPU Display Driver contain a vulnerability in the kernel mode layer handler where improper validation of an input parameter may cause a denial of service on the system. |
| Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Group Temporal Key (GTK) during the group key handshake, allowing an attacker within radio range to replay frames from access points to clients. |
| Wi-Fi Protected Access (WPA and WPA2) that support 802.11v allows reinstallation of the Integrity Group Temporal Key (IGTK) when processing a Wireless Network Management (WNM) Sleep Mode Response frame, allowing an attacker within radio range to replay frames from access points to clients. |
| The Linux compatibility layer in the kernel in FreeBSD 9.3, 10.1, and 10.2 allows local users to read portions of kernel memory and potentially gain privilege via unspecified vectors, related to "handling of Linux futex robust lists." |
| The issetugid system call in the Linux compatibility layer in FreeBSD 9.3, 10.1, and 10.2 allows local users to gain privilege via unspecified vectors. |
| The sys_amd64 IRET Handler in the kernel in FreeBSD 9.3 and 10.1 allows local users to gain privileges or cause a denial of service (kernel panic). |
| In FreeBSD through 11.1, the smb_strdupin function in sys/netsmb/smb_subr.c has a race condition with a resultant out-of-bounds read, because it can cause t2p->t_name strings to lack a final '\0' character. |
| All versions of NVIDIA GPU Display Driver contain a vulnerability in the kernel mode layer handler where multiple integer overflows may cause improper memory allocation leading to a denial of service or potential escalation of privileges. |
| Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Group Temporal Key (GTK) during the four-way handshake, allowing an attacker within radio range to replay frames from access points to clients. |
| In FreeBSD 10.x before 10.4-STABLE, 10.4-RELEASE-p3, and 10.3-RELEASE-p24 named paths are globally scoped, meaning a process located in one jail can read and modify the content of POSIX shared memory objects created by a process in another jail or the host system. As a result, a malicious user that has access to a jailed system is able to abuse shared memory by injecting malicious content in the shared memory region. This memory region might be executed by applications trusting the shared memory, like Squid. This issue could lead to a Denial of Service or local privilege escalation. |
| In FreeBSD before 11.1-STABLE, 11.1-RELEASE-p4, 11.0-RELEASE-p15, 10.4-STABLE, 10.4-RELEASE-p3, and 10.3-RELEASE-p24, not all information in the struct ptrace_lwpinfo is relevant for the state of any thread, and the kernel does not fill the irrelevant bytes or short strings. Since the structure filled by the kernel is allocated on the kernel stack and copied to userspace, a leak of information of the kernel stack of the thread is possible from the debugger. As a result, some bytes from the kernel stack of the thread using ptrace (PT_LWPINFO) call can be observed in userspace. |
| The kernel in FreeBSD 9.3, 10.1, and 10.2 allows local users to cause a denial of service (crash) or potentially gain privilege via a crafted Linux compatibility layer setgroups system call. |