| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix NULL pointer dereference in VRAM logic for APU devices
Previously, APU platforms (and other scenarios with uninitialized VRAM managers)
triggered a NULL pointer dereference in `ttm_resource_manager_usage()`. The root
cause is not that the `struct ttm_resource_manager *man` pointer itself is NULL,
but that `man->bdev` (the backing device pointer within the manager) remains
uninitialized (NULL) on APUs—since APUs lack dedicated VRAM and do not fully
set up VRAM manager structures. When `ttm_resource_manager_usage()` attempts to
acquire `man->bdev->lru_lock`, it dereferences the NULL `man->bdev`, leading to
a kernel OOPS.
1. **amdgpu_cs.c**: Extend the existing bandwidth control check in
`amdgpu_cs_get_threshold_for_moves()` to include a check for
`ttm_resource_manager_used()`. If the manager is not used (uninitialized
`bdev`), return 0 for migration thresholds immediately—skipping VRAM-specific
logic that would trigger the NULL dereference.
2. **amdgpu_kms.c**: Update the `AMDGPU_INFO_VRAM_USAGE` ioctl and memory info
reporting to use a conditional: if the manager is used, return the real VRAM
usage; otherwise, return 0. This avoids accessing `man->bdev` when it is
NULL.
3. **amdgpu_virt.c**: Modify the vf2pf (virtual function to physical function)
data write path. Use `ttm_resource_manager_used()` to check validity: if the
manager is usable, calculate `fb_usage` from VRAM usage; otherwise, set
`fb_usage` to 0 (APUs have no discrete framebuffer to report).
This approach is more robust than APU-specific checks because it:
- Works for all scenarios where the VRAM manager is uninitialized (not just APUs),
- Aligns with TTM's design by using its native helper function,
- Preserves correct behavior for discrete GPUs (which have fully initialized
`man->bdev` and pass the `ttm_resource_manager_used()` check).
v4: use ttm_resource_manager_used(&adev->mman.vram_mgr.manager) instead of checking the adev->gmc.is_app_apu flag (Christian) |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: fix improper check of dentry.stream.valid_size
We found an infinite loop bug in the exFAT file system that can lead to a
Denial-of-Service (DoS) condition. When a dentry in an exFAT filesystem is
malformed, the following system calls — SYS_openat, SYS_ftruncate, and
SYS_pwrite64 — can cause the kernel to hang.
Root cause analysis shows that the size validation code in exfat_find()
does not check whether dentry.stream.valid_size is negative. As a result,
the system calls mentioned above can succeed and eventually trigger the DoS
issue.
This patch adds a check for negative dentry.stream.valid_size to prevent
this vulnerability. |
| In the Linux kernel, the following vulnerability has been resolved:
smb/server: fix possible memory leak in smb2_read()
Memory leak occurs when ksmbd_vfs_read() fails.
Fix this by adding the missing kvfree(). |
| In the Linux kernel, the following vulnerability has been resolved:
smb/server: fix possible refcount leak in smb2_sess_setup()
Reference count of ksmbd_session will leak when session need reconnect.
Fix this by adding the missing ksmbd_user_session_put(). |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Check the untrusted offset in FF-A memory share
Verify the offset to prevent OOB access in the hypervisor
FF-A buffer in case an untrusted large enough value
[U32_MAX - sizeof(struct ffa_composite_mem_region) + 1, U32_MAX]
is set from the host kernel. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: Fix pgtable prealloc error path
The following splat was reported:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010
Mem abort info:
ESR = 0x0000000096000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=00000008d0fd8000
[0000000000000010] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 0000000096000004 [#1] SMP
CPU: 5 UID: 1000 PID: 149076 Comm: Xwayland Tainted: G S 6.16.0-rc2-00809-g0b6974bb4134-dirty #367 PREEMPT
Tainted: [S]=CPU_OUT_OF_SPEC
Hardware name: Qualcomm Technologies, Inc. SM8650 HDK (DT)
pstate: 83400005 (Nzcv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--)
pc : build_detached_freelist+0x28/0x224
lr : kmem_cache_free_bulk.part.0+0x38/0x244
sp : ffff000a508c7a20
x29: ffff000a508c7a20 x28: ffff000a508c7d50 x27: ffffc4e49d16f350
x26: 0000000000000058 x25: 00000000fffffffc x24: 0000000000000000
x23: ffff00098c4e1450 x22: 00000000fffffffc x21: 0000000000000000
x20: ffff000a508c7af8 x19: 0000000000000002 x18: 00000000000003e8
x17: ffff000809523850 x16: ffff000809523820 x15: 0000000000401640
x14: ffff000809371140 x13: 0000000000000130 x12: ffff0008b5711e30
x11: 00000000001058fa x10: 0000000000000a80 x9 : ffff000a508c7940
x8 : ffff000809371ba0 x7 : 781fffe033087fff x6 : 0000000000000000
x5 : ffff0008003cd000 x4 : 781fffe033083fff x3 : ffff000a508c7af8
x2 : fffffdffc0000000 x1 : 0001000000000000 x0 : ffff0008001a6a00
Call trace:
build_detached_freelist+0x28/0x224 (P)
kmem_cache_free_bulk.part.0+0x38/0x244
kmem_cache_free_bulk+0x10/0x1c
msm_iommu_pagetable_prealloc_cleanup+0x3c/0xd0
msm_vma_job_free+0x30/0x240
msm_ioctl_vm_bind+0x1d0/0x9a0
drm_ioctl_kernel+0x84/0x104
drm_ioctl+0x358/0x4d4
__arm64_sys_ioctl+0x8c/0xe0
invoke_syscall+0x44/0x100
el0_svc_common.constprop.0+0x3c/0xe0
do_el0_svc+0x18/0x20
el0_svc+0x30/0x100
el0t_64_sync_handler+0x104/0x130
el0t_64_sync+0x170/0x174
Code: aa0203f5 b26287e2 f2dfbfe2 aa0303f4 (f8737ab6)
---[ end trace 0000000000000000 ]---
Since msm_vma_job_free() is called directly from the ioctl, this looks
like an error path cleanup issue. Which I think results from
prealloc_cleanup() called without a preceding successful
prealloc_allocate() call. So handle that case better.
Patchwork: https://patchwork.freedesktop.org/patch/678677/ |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to do sanity check on node footer for non inode dnode
As syzbot reported below:
------------[ cut here ]------------
kernel BUG at fs/f2fs/file.c:1243!
Oops: invalid opcode: 0000 [#1] SMP KASAN NOPTI
CPU: 0 UID: 0 PID: 5354 Comm: syz.0.0 Not tainted 6.17.0-rc1-syzkaller-00211-g90d970cade8e #0 PREEMPT(full)
RIP: 0010:f2fs_truncate_hole+0x69e/0x6c0 fs/f2fs/file.c:1243
Call Trace:
<TASK>
f2fs_punch_hole+0x2db/0x330 fs/f2fs/file.c:1306
f2fs_fallocate+0x546/0x990 fs/f2fs/file.c:2018
vfs_fallocate+0x666/0x7e0 fs/open.c:342
ksys_fallocate fs/open.c:366 [inline]
__do_sys_fallocate fs/open.c:371 [inline]
__se_sys_fallocate fs/open.c:369 [inline]
__x64_sys_fallocate+0xc0/0x110 fs/open.c:369
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f1e65f8ebe9
w/ a fuzzed image, f2fs may encounter panic due to it detects inconsistent
truncation range in direct node in f2fs_truncate_hole().
The root cause is: a non-inode dnode may has the same footer.ino and
footer.nid, so the dnode will be parsed as an inode, then ADDRS_PER_PAGE()
may return wrong blkaddr count which may be 923 typically, by chance,
dn.ofs_in_node is equal to 923, then count can be calculated to 0 in below
statement, later it will trigger panic w/ f2fs_bug_on(, count == 0 || ...).
count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
This patch introduces a new node_type NODE_TYPE_NON_INODE, then allowing
passing the new_type to sanity_check_node_footer in f2fs_get_node_folio()
to detect corruption that a non-inode dnode has the same footer.ino and
footer.nid.
Scripts to reproduce:
mkfs.f2fs -f /dev/vdb
mount /dev/vdb /mnt/f2fs
touch /mnt/f2fs/foo
touch /mnt/f2fs/bar
dd if=/dev/zero of=/mnt/f2fs/foo bs=1M count=8
umount /mnt/f2fs
inject.f2fs --node --mb i_nid --nid 4 --idx 0 --val 5 /dev/vdb
mount /dev/vdb /mnt/f2fs
xfs_io /mnt/f2fs/foo -c "fpunch 6984k 4k" |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: bpf: Only mitigate cBPF programs loaded by unprivileged users
Support for eBPF programs loaded by unprivileged users is typically
disabled. This means only cBPF programs need to be mitigated for BHB.
In addition, only mitigate cBPF programs that were loaded by an
unprivileged user. Privileged users can also load the same program
via eBPF, making the mitigation pointless. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: bpf: Add BHB mitigation to the epilogue for cBPF programs
A malicious BPF program may manipulate the branch history to influence
what the hardware speculates will happen next.
On exit from a BPF program, emit the BHB mititgation sequence.
This is only applied for 'classic' cBPF programs that are loaded by
seccomp. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Tear down vGIC on failed vCPU creation
If kvm_arch_vcpu_create() fails to share the vCPU page with the
hypervisor, we propagate the error back to the ioctl but leave the
vGIC vCPU data initialised. Note only does this leak the corresponding
memory when the vCPU is destroyed but it can also lead to use-after-free
if the redistributor device handling tries to walk into the vCPU.
Add the missing cleanup to kvm_arch_vcpu_create(), ensuring that the
vGIC vCPU structures are destroyed on error. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Get rid of userspace_irqchip_in_use
Improper use of userspace_irqchip_in_use led to syzbot hitting the
following WARN_ON() in kvm_timer_update_irq():
WARNING: CPU: 0 PID: 3281 at arch/arm64/kvm/arch_timer.c:459
kvm_timer_update_irq+0x21c/0x394
Call trace:
kvm_timer_update_irq+0x21c/0x394 arch/arm64/kvm/arch_timer.c:459
kvm_timer_vcpu_reset+0x158/0x684 arch/arm64/kvm/arch_timer.c:968
kvm_reset_vcpu+0x3b4/0x560 arch/arm64/kvm/reset.c:264
kvm_vcpu_set_target arch/arm64/kvm/arm.c:1553 [inline]
kvm_arch_vcpu_ioctl_vcpu_init arch/arm64/kvm/arm.c:1573 [inline]
kvm_arch_vcpu_ioctl+0x112c/0x1b3c arch/arm64/kvm/arm.c:1695
kvm_vcpu_ioctl+0x4ec/0xf74 virt/kvm/kvm_main.c:4658
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl fs/ioctl.c:893 [inline]
__arm64_sys_ioctl+0x108/0x184 fs/ioctl.c:893
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall+0x78/0x1b8 arch/arm64/kernel/syscall.c:49
el0_svc_common+0xe8/0x1b0 arch/arm64/kernel/syscall.c:132
do_el0_svc+0x40/0x50 arch/arm64/kernel/syscall.c:151
el0_svc+0x54/0x14c arch/arm64/kernel/entry-common.c:712
el0t_64_sync_handler+0x84/0xfc arch/arm64/kernel/entry-common.c:730
el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:598
The following sequence led to the scenario:
- Userspace creates a VM and a vCPU.
- The vCPU is initialized with KVM_ARM_VCPU_PMU_V3 during
KVM_ARM_VCPU_INIT.
- Without any other setup, such as vGIC or vPMU, userspace issues
KVM_RUN on the vCPU. Since the vPMU is requested, but not setup,
kvm_arm_pmu_v3_enable() fails in kvm_arch_vcpu_run_pid_change().
As a result, KVM_RUN returns after enabling the timer, but before
incrementing 'userspace_irqchip_in_use':
kvm_arch_vcpu_run_pid_change()
ret = kvm_arm_pmu_v3_enable()
if (!vcpu->arch.pmu.created)
return -EINVAL;
if (ret)
return ret;
[...]
if (!irqchip_in_kernel(kvm))
static_branch_inc(&userspace_irqchip_in_use);
- Userspace ignores the error and issues KVM_ARM_VCPU_INIT again.
Since the timer is already enabled, control moves through the
following flow, ultimately hitting the WARN_ON():
kvm_timer_vcpu_reset()
if (timer->enabled)
kvm_timer_update_irq()
if (!userspace_irqchip())
ret = kvm_vgic_inject_irq()
ret = vgic_lazy_init()
if (unlikely(!vgic_initialized(kvm)))
if (kvm->arch.vgic.vgic_model !=
KVM_DEV_TYPE_ARM_VGIC_V2)
return -EBUSY;
WARN_ON(ret);
Theoretically, since userspace_irqchip_in_use's functionality can be
simply replaced by '!irqchip_in_kernel()', get rid of the static key
to avoid the mismanagement, which also helps with the syzbot issue. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-multipath: defer partition scanning
We need to suppress the partition scan from occuring within the
controller's scan_work context. If a path error occurs here, the IO will
wait until a path becomes available or all paths are torn down, but that
action also occurs within scan_work, so it would deadlock. Defer the
partion scan to a different context that does not block scan_work. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: acpi: Harden get_cpu_for_acpi_id() against missing CPU entry
In a review discussion of the changes to support vCPU hotplug where
a check was added on the GICC being enabled if was online, it was
noted that there is need to map back to the cpu and use that to index
into a cpumask. As such, a valid ID is needed.
If an MPIDR check fails in acpi_map_gic_cpu_interface() it is possible
for the entry in cpu_madt_gicc[cpu] == NULL. This function would
then cause a NULL pointer dereference. Whilst a path to trigger
this has not been established, harden this caller against the
possibility. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Make ICC_*SGI*_EL1 undef in the absence of a vGICv3
On a system with a GICv3, if a guest hasn't been configured with
GICv3 and that the host is not capable of GICv2 emulation,
a write to any of the ICC_*SGI*_EL1 registers is trapped to EL2.
We therefore try to emulate the SGI access, only to hit a NULL
pointer as no private interrupt is allocated (no GIC, remember?).
The obvious fix is to give the guest what it deserves, in the
shape of a UNDEF exception. |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet: always initialize cqe.result
The spec doesn't mandate that the first two double words (aka results)
for the command queue entry need to be set to 0 when they are not
used (not specified). Though, the target implemention returns 0 for TCP
and FC but not for RDMA.
Let's make RDMA behave the same and thus explicitly initializing the
result field. This prevents leaking any data from the stack. |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet-fc: avoid deadlock on delete association path
When deleting an association the shutdown path is deadlocking because we
try to flush the nvmet_wq nested. Avoid this by deadlock by deferring
the put work into its own work item. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Fix circular locking dependency
The rule inside kvm enforces that the vcpu->mutex is taken *inside*
kvm->lock. The rule is violated by the pkvm_create_hyp_vm() which acquires
the kvm->lock while already holding the vcpu->mutex lock from
kvm_vcpu_ioctl(). Avoid the circular locking dependency altogether by
protecting the hyp vm handle with the config_lock, much like we already
do for other forms of VM-scoped data. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: vgic-its: Avoid potential UAF in LPI translation cache
There is a potential UAF scenario in the case of an LPI translation
cache hit racing with an operation that invalidates the cache, such
as a DISCARD ITS command. The root of the problem is that
vgic_its_check_cache() does not elevate the refcount on the vgic_irq
before dropping the lock that serializes refcount changes.
Have vgic_its_check_cache() raise the refcount on the returned vgic_irq
and add the corresponding decrement after queueing the interrupt. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to do sanity check on direct node in truncate_dnode()
syzbot reports below bug:
BUG: KASAN: slab-use-after-free in f2fs_truncate_data_blocks_range+0x122a/0x14c0 fs/f2fs/file.c:574
Read of size 4 at addr ffff88802a25c000 by task syz-executor148/5000
CPU: 1 PID: 5000 Comm: syz-executor148 Not tainted 6.4.0-rc7-syzkaller-00041-ge660abd551f1 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/27/2023
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xd9/0x150 lib/dump_stack.c:106
print_address_description.constprop.0+0x2c/0x3c0 mm/kasan/report.c:351
print_report mm/kasan/report.c:462 [inline]
kasan_report+0x11c/0x130 mm/kasan/report.c:572
f2fs_truncate_data_blocks_range+0x122a/0x14c0 fs/f2fs/file.c:574
truncate_dnode+0x229/0x2e0 fs/f2fs/node.c:944
f2fs_truncate_inode_blocks+0x64b/0xde0 fs/f2fs/node.c:1154
f2fs_do_truncate_blocks+0x4ac/0xf30 fs/f2fs/file.c:721
f2fs_truncate_blocks+0x7b/0x300 fs/f2fs/file.c:749
f2fs_truncate.part.0+0x4a5/0x630 fs/f2fs/file.c:799
f2fs_truncate include/linux/fs.h:825 [inline]
f2fs_setattr+0x1738/0x2090 fs/f2fs/file.c:1006
notify_change+0xb2c/0x1180 fs/attr.c:483
do_truncate+0x143/0x200 fs/open.c:66
handle_truncate fs/namei.c:3295 [inline]
do_open fs/namei.c:3640 [inline]
path_openat+0x2083/0x2750 fs/namei.c:3791
do_filp_open+0x1ba/0x410 fs/namei.c:3818
do_sys_openat2+0x16d/0x4c0 fs/open.c:1356
do_sys_open fs/open.c:1372 [inline]
__do_sys_creat fs/open.c:1448 [inline]
__se_sys_creat fs/open.c:1442 [inline]
__x64_sys_creat+0xcd/0x120 fs/open.c:1442
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The root cause is, inodeA references inodeB via inodeB's ino, once inodeA
is truncated, it calls truncate_dnode() to truncate data blocks in inodeB's
node page, it traverse mapping data from node->i.i_addr[0] to
node->i.i_addr[ADDRS_PER_BLOCK() - 1], result in out-of-boundary access.
This patch fixes to add sanity check on dnode page in truncate_dnode(),
so that, it can help to avoid triggering such issue, and once it encounters
such issue, it will record newly introduced ERROR_INVALID_NODE_REFERENCE
error into superblock, later fsck can detect such issue and try repairing.
Also, it removes f2fs_truncate_data_blocks() for cleanup due to the
function has only one caller, and uses f2fs_truncate_data_blocks_range()
instead. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: flush inode if atomic file is aborted
Let's flush the inode being aborted atomic operation to avoid stale dirty
inode during eviction in this call stack:
f2fs_mark_inode_dirty_sync+0x22/0x40 [f2fs]
f2fs_abort_atomic_write+0xc4/0xf0 [f2fs]
f2fs_evict_inode+0x3f/0x690 [f2fs]
? sugov_start+0x140/0x140
evict+0xc3/0x1c0
evict_inodes+0x17b/0x210
generic_shutdown_super+0x32/0x120
kill_block_super+0x21/0x50
deactivate_locked_super+0x31/0x90
cleanup_mnt+0x100/0x160
task_work_run+0x59/0x90
do_exit+0x33b/0xa50
do_group_exit+0x2d/0x80
__x64_sys_exit_group+0x14/0x20
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
This triggers f2fs_bug_on() in f2fs_evict_inode:
f2fs_bug_on(sbi, is_inode_flag_set(inode, FI_DIRTY_INODE));
This fixes the syzbot report:
loop0: detected capacity change from 0 to 131072
F2FS-fs (loop0): invalid crc value
F2FS-fs (loop0): Found nat_bits in checkpoint
F2FS-fs (loop0): Mounted with checkpoint version = 48b305e4
------------[ cut here ]------------
kernel BUG at fs/f2fs/inode.c:869!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 5014 Comm: syz-executor220 Not tainted 6.4.0-syzkaller-11479-g6cd06ab12d1a #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/27/2023
RIP: 0010:f2fs_evict_inode+0x172d/0x1e00 fs/f2fs/inode.c:869
Code: ff df 48 c1 ea 03 80 3c 02 00 0f 85 6a 06 00 00 8b 75 40 ba 01 00 00 00 4c 89 e7 e8 6d ce 06 00 e9 aa fc ff ff e8 63 22 e2 fd <0f> 0b e8 5c 22 e2 fd 48 c7 c0 a8 3a 18 8d 48 ba 00 00 00 00 00 fc
RSP: 0018:ffffc90003a6fa00 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000000
RDX: ffff8880273b8000 RSI: ffffffff83a2bd0d RDI: 0000000000000007
RBP: ffff888077db91b0 R08: 0000000000000007 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000001 R12: ffff888029a3c000
R13: ffff888077db9660 R14: ffff888029a3c0b8 R15: ffff888077db9c50
FS: 0000000000000000(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1909bb9000 CR3: 00000000276a9000 CR4: 0000000000350ef0
Call Trace:
<TASK>
evict+0x2ed/0x6b0 fs/inode.c:665
dispose_list+0x117/0x1e0 fs/inode.c:698
evict_inodes+0x345/0x440 fs/inode.c:748
generic_shutdown_super+0xaf/0x480 fs/super.c:478
kill_block_super+0x64/0xb0 fs/super.c:1417
kill_f2fs_super+0x2af/0x3c0 fs/f2fs/super.c:4704
deactivate_locked_super+0x98/0x160 fs/super.c:330
deactivate_super+0xb1/0xd0 fs/super.c:361
cleanup_mnt+0x2ae/0x3d0 fs/namespace.c:1254
task_work_run+0x16f/0x270 kernel/task_work.c:179
exit_task_work include/linux/task_work.h:38 [inline]
do_exit+0xa9a/0x29a0 kernel/exit.c:874
do_group_exit+0xd4/0x2a0 kernel/exit.c:1024
__do_sys_exit_group kernel/exit.c:1035 [inline]
__se_sys_exit_group kernel/exit.c:1033 [inline]
__x64_sys_exit_group+0x3e/0x50 kernel/exit.c:1033
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f309be71a09
Code: Unable to access opcode bytes at 0x7f309be719df.
RSP: 002b:00007fff171df518 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7
RAX: ffffffffffffffda RBX: 00007f309bef7330 RCX: 00007f309be71a09
RDX: 000000000000003c RSI: 00000000000000e7 RDI: 0000000000000001
RBP: 0000000000000001 R08: ffffffffffffffc0 R09: 00007f309bef1e40
R10: 0000000000010600 R11: 0000000000000246 R12: 00007f309bef7330
R13: 0000000000000001 R14: 0000000000000000 R15: 0000000000000001
</TASK>
Modules linked in:
---[ end trace 0000000000000000 ]---
RIP: 0010:f2fs_evict_inode+0x172d/0x1e00 fs/f2fs/inode.c:869
Code: ff df 48 c1 ea 03 80 3c 02 00 0f 85 6a 06 00 00 8b 75 40 ba 01 00 00 00 4c 89 e7 e8 6d ce 06 00 e9 aa fc ff ff e8 63 22 e2 fd <0f> 0b e8 5c 22 e2 fd 48 c7 c0 a8 3a 18 8d 48 ba 00 00 00 00 00 fc
RSP: 0018:ffffc90003a6fa00 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000000
---truncated--- |