| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
fou: Don't allow 0 for FOU_ATTR_IPPROTO.
fou_udp_recv() has the same problem mentioned in the previous
patch.
If FOU_ATTR_IPPROTO is set to 0, skb is not freed by
fou_udp_recv() nor "resubmit"-ted in ip_protocol_deliver_rcu().
Let's forbid 0 for FOU_ATTR_IPPROTO. |
| In the Linux kernel, the following vulnerability has been resolved:
can: gs_usb: gs_usb_receive_bulk_callback(): unanchor URL on usb_submit_urb() error
In commit 7352e1d5932a ("can: gs_usb: gs_usb_receive_bulk_callback(): fix
URB memory leak"), the URB was re-anchored before usb_submit_urb() in
gs_usb_receive_bulk_callback() to prevent a leak of this URB during
cleanup.
However, this patch did not take into account that usb_submit_urb() could
fail. The URB remains anchored and
usb_kill_anchored_urbs(&parent->rx_submitted) in gs_can_close() loops
infinitely since the anchor list never becomes empty.
To fix the bug, unanchor the URB when an usb_submit_urb() error occurs,
also print an info message. |
| In the Linux kernel, the following vulnerability has been resolved:
net: phy: intel-xway: fix OF node refcount leakage
Automated review spotted am OF node reference count leakage when
checking if the 'leds' child node exists.
Call of_put_node() to correctly maintain the refcount. |
| In the Linux kernel, the following vulnerability has been resolved:
can: mcba_usb: mcba_usb_read_bulk_callback(): fix URB memory leak
Fix similar memory leak as in commit 7352e1d5932a ("can: gs_usb:
gs_usb_receive_bulk_callback(): fix URB memory leak").
In mcba_usb_probe() -> mcba_usb_start(), the URBs for USB-in transfers are
allocated, added to the priv->rx_submitted anchor and submitted. In the
complete callback mcba_usb_read_bulk_callback(), the URBs are processed and
resubmitted. In mcba_usb_close() -> mcba_urb_unlink() the URBs are freed by
calling usb_kill_anchored_urbs(&priv->rx_submitted).
However, this does not take into account that the USB framework unanchors
the URB before the complete function is called. This means that once an
in-URB has been completed, it is no longer anchored and is ultimately not
released in usb_kill_anchored_urbs().
Fix the memory leak by anchoring the URB in the
mcba_usb_read_bulk_callback()to the priv->rx_submitted anchor. |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: cdev: Fix resource leaks on errors in lineinfo_changed_notify()
On error handling paths, lineinfo_changed_notify() doesn't free the
allocated resources which results leaks. Fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: scarlett2: Fix buffer overflow in config retrieval
The scarlett2_usb_get_config() function has a logic error in the
endianness conversion code that can cause buffer overflows when
count > 1.
The code checks `if (size == 2)` where `size` is the total buffer size in
bytes, then loops `count` times treating each element as u16 (2 bytes).
This causes the loop to access `count * 2` bytes when the buffer only
has `size` bytes allocated.
Fix by checking the element size (config_item->size) instead of the
total buffer size. This ensures the endianness conversion matches the
actual element type. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/vma: fix anon_vma UAF on mremap() faulted, unfaulted merge
Patch series "mm/vma: fix anon_vma UAF on mremap() faulted, unfaulted
merge", v2.
Commit 879bca0a2c4f ("mm/vma: fix incorrectly disallowed anonymous VMA
merges") introduced the ability to merge previously unavailable VMA merge
scenarios.
However, it is handling merges incorrectly when it comes to mremap() of a
faulted VMA adjacent to an unfaulted VMA. The issues arise in three
cases:
1. Previous VMA unfaulted:
copied -----|
v
|-----------|.............|
| unfaulted |(faulted VMA)|
|-----------|.............|
prev
2. Next VMA unfaulted:
copied -----|
v
|.............|-----------|
|(faulted VMA)| unfaulted |
|.............|-----------|
next
3. Both adjacent VMAs unfaulted:
copied -----|
v
|-----------|.............|-----------|
| unfaulted |(faulted VMA)| unfaulted |
|-----------|.............|-----------|
prev next
This series fixes each of these cases, and introduces self tests to assert
that the issues are corrected.
I also test a further case which was already handled, to assert that my
changes continues to correctly handle it:
4. prev unfaulted, next faulted:
copied -----|
v
|-----------|.............|-----------|
| unfaulted |(faulted VMA)| faulted |
|-----------|.............|-----------|
prev next
This bug was discovered via a syzbot report, linked to in the first patch
in the series, I confirmed that this series fixes the bug.
I also discovered that we are failing to check that the faulted VMA was
not forked when merging a copied VMA in cases 1-3 above, an issue this
series also addresses.
I also added self tests to assert that this is resolved (and confirmed
that the tests failed prior to this).
I also cleaned up vma_expand() as part of this work, renamed
vma_had_uncowed_parents() to vma_is_fork_child() as the previous name was
unduly confusing, and simplified the comments around this function.
This patch (of 4):
Commit 879bca0a2c4f ("mm/vma: fix incorrectly disallowed anonymous VMA
merges") introduced the ability to merge previously unavailable VMA merge
scenarios.
The key piece of logic introduced was the ability to merge a faulted VMA
immediately next to an unfaulted VMA, which relies upon dup_anon_vma() to
correctly handle anon_vma state.
In the case of the merge of an existing VMA (that is changing properties
of a VMA and then merging if those properties are shared by adjacent
VMAs), dup_anon_vma() is invoked correctly.
However in the case of the merge of a new VMA, a corner case peculiar to
mremap() was missed.
The issue is that vma_expand() only performs dup_anon_vma() if the target
(the VMA that will ultimately become the merged VMA): is not the next VMA,
i.e. the one that appears after the range in which the new VMA is to be
established.
A key insight here is that in all other cases other than mremap(), a new
VMA merge either expands an existing VMA, meaning that the target VMA will
be that VMA, or would have anon_vma be NULL.
Specifically:
* __mmap_region() - no anon_vma in place, initial mapping.
* do_brk_flags() - expanding an existing VMA.
* vma_merge_extend() - expanding an existing VMA.
* relocate_vma_down() - no anon_vma in place, initial mapping.
In addition, we are in the unique situation of needing to duplicate
anon_vma state from a VMA that is neither the previous or next VMA being
merged with.
dup_anon_vma() deals exclusively with the target=unfaulted, src=faulted
case. This leaves four possibilities, in each case where the copied VMA
is faulted:
1. Previous VMA unfaulted:
copied -----|
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: ctxfi: Fix potential OOB access in audio mixer handling
In the audio mixer handling code of ctxfi driver, the conf field is
used as a kind of loop index, and it's referred in the index callbacks
(amixer_index() and sum_index()).
As spotted recently by fuzzers, the current code causes OOB access at
those functions.
| UBSAN: array-index-out-of-bounds in /build/reproducible-path/linux-6.17.8/sound/pci/ctxfi/ctamixer.c:347:48
| index 8 is out of range for type 'unsigned char [8]'
After the analysis, the cause was found to be the lack of the proper
(re-)initialization of conj field.
This patch addresses those OOB accesses by adding the proper
initializations of the loop indices. |
| In the Linux kernel, the following vulnerability has been resolved:
can: esd_usb: esd_usb_read_bulk_callback(): fix URB memory leak
Fix similar memory leak as in commit 7352e1d5932a ("can: gs_usb:
gs_usb_receive_bulk_callback(): fix URB memory leak").
In esd_usb_open(), the URBs for USB-in transfers are allocated, added to
the dev->rx_submitted anchor and submitted. In the complete callback
esd_usb_read_bulk_callback(), the URBs are processed and resubmitted. In
esd_usb_close() the URBs are freed by calling
usb_kill_anchored_urbs(&dev->rx_submitted).
However, this does not take into account that the USB framework unanchors
the URB before the complete function is called. This means that once an
in-URB has been completed, it is no longer anchored and is ultimately not
released in esd_usb_close().
Fix the memory leak by anchoring the URB in the
esd_usb_read_bulk_callback() to the dev->rx_submitted anchor. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: Enforce that teql can only be used as root qdisc
Design intent of teql is that it is only supposed to be used as root qdisc.
We need to check for that constraint.
Although not important, I will describe the scenario that unearthed this
issue for the curious.
GangMin Kim <km.kim1503@gmail.com> managed to concot a scenario as follows:
ROOT qdisc 1:0 (QFQ)
├── class 1:1 (weight=15, lmax=16384) netem with delay 6.4s
└── class 1:2 (weight=1, lmax=1514) teql
GangMin sends a packet which is enqueued to 1:1 (netem).
Any invocation of dequeue by QFQ from this class will not return a packet
until after 6.4s. In the meantime, a second packet is sent and it lands on
1:2. teql's enqueue will return success and this will activate class 1:2.
Main issue is that teql only updates the parent visible qlen (sch->q.qlen)
at dequeue. Since QFQ will only call dequeue if peek succeeds (and teql's
peek always returns NULL), dequeue will never be called and thus the qlen
will remain as 0. With that in mind, when GangMin updates 1:2's lmax value,
the qfq_change_class calls qfq_deact_rm_from_agg. Since the child qdisc's
qlen was not incremented, qfq fails to deactivate the class, but still
frees its pointers from the aggregate. So when the first packet is
rescheduled after 6.4 seconds (netem's delay), a dangling pointer is
accessed causing GangMin's causing a UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rsi: Fix memory corruption due to not set vif driver data size
The struct ieee80211_vif contains trailing space for vif driver data,
when struct ieee80211_vif is allocated, the total memory size that is
allocated is sizeof(struct ieee80211_vif) + size of vif driver data.
The size of vif driver data is set by each WiFi driver as needed.
The RSI911x driver does not set vif driver data size, no trailing space
for vif driver data is therefore allocated past struct ieee80211_vif .
The RSI911x driver does however use the vif driver data to store its
vif driver data structure "struct vif_priv". An access to vif->drv_priv
leads to access out of struct ieee80211_vif bounds and corruption of
some memory.
In case of the failure observed locally, rsi_mac80211_add_interface()
would write struct vif_priv *vif_info = (struct vif_priv *)vif->drv_priv;
vif_info->vap_id = vap_idx. This write corrupts struct fq_tin member
struct list_head new_flows . The flow = list_first_entry(head, struct
fq_flow, flowchain); in fq_tin_reset() then reports non-NULL bogus
address, which when accessed causes a crash.
The trigger is very simple, boot the machine with init=/bin/sh , mount
devtmpfs, sysfs, procfs, and then do "ip link set wlan0 up", "sleep 1",
"ip link set wlan0 down" and the crash occurs.
Fix this by setting the correct size of vif driver data, which is the
size of "struct vif_priv", so that memory is allocated and the driver
can store its driver data in it, instead of corrupting memory around
it. |
| In the Linux kernel, the following vulnerability has been resolved:
l2tp: Fix memleak in l2tp_udp_encap_recv().
syzbot reported memleak of struct l2tp_session, l2tp_tunnel,
sock, etc. [0]
The cited commit moved down the validation of the protocol
version in l2tp_udp_encap_recv().
The new place requires an extra error handling to avoid the
memleak.
Let's call l2tp_session_put() there.
[0]:
BUG: memory leak
unreferenced object 0xffff88810a290200 (size 512):
comm "syz.0.17", pid 6086, jiffies 4294944299
hex dump (first 32 bytes):
7d eb 04 0c 00 00 00 00 01 00 00 00 00 00 00 00 }...............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc babb6a4f):
kmemleak_alloc_recursive include/linux/kmemleak.h:44 [inline]
slab_post_alloc_hook mm/slub.c:4958 [inline]
slab_alloc_node mm/slub.c:5263 [inline]
__do_kmalloc_node mm/slub.c:5656 [inline]
__kmalloc_noprof+0x3e0/0x660 mm/slub.c:5669
kmalloc_noprof include/linux/slab.h:961 [inline]
kzalloc_noprof include/linux/slab.h:1094 [inline]
l2tp_session_create+0x3a/0x3b0 net/l2tp/l2tp_core.c:1778
pppol2tp_connect+0x48b/0x920 net/l2tp/l2tp_ppp.c:755
__sys_connect_file+0x7a/0xb0 net/socket.c:2089
__sys_connect+0xde/0x110 net/socket.c:2108
__do_sys_connect net/socket.c:2114 [inline]
__se_sys_connect net/socket.c:2111 [inline]
__x64_sys_connect+0x1c/0x30 net/socket.c:2111
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xa4/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
regmap: Fix race condition in hwspinlock irqsave routine
Previously, the address of the shared member '&map->spinlock_flags' was
passed directly to 'hwspin_lock_timeout_irqsave'. This creates a race
condition where multiple contexts contending for the lock could overwrite
the shared flags variable, potentially corrupting the state for the
current lock owner.
Fix this by using a local stack variable 'flags' to store the IRQ state
temporarily. |
| In the Linux kernel, the following vulnerability has been resolved:
Octeontx2-af: Add proper checks for fwdata
firmware populates MAC address, link modes (supported, advertised)
and EEPROM data in shared firmware structure which kernel access
via MAC block(CGX/RPM).
Accessing fwdata, on boards booted with out MAC block leading to
kernel panics.
Internal error: Oops: 0000000096000005 [#1] SMP
[ 10.460721] Modules linked in:
[ 10.463779] CPU: 0 UID: 0 PID: 174 Comm: kworker/0:3 Not tainted 6.19.0-rc5-00154-g76ec646abdf7-dirty #3 PREEMPT
[ 10.474045] Hardware name: Marvell OcteonTX CN98XX board (DT)
[ 10.479793] Workqueue: events work_for_cpu_fn
[ 10.484159] pstate: 80400009 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 10.491124] pc : rvu_sdp_init+0x18/0x114
[ 10.495051] lr : rvu_probe+0xe58/0x1d18 |
| In the Linux kernel, the following vulnerability has been resolved:
vsock/virtio: fix potential underflow in virtio_transport_get_credit()
The credit calculation in virtio_transport_get_credit() uses unsigned
arithmetic:
ret = vvs->peer_buf_alloc - (vvs->tx_cnt - vvs->peer_fwd_cnt);
If the peer shrinks its advertised buffer (peer_buf_alloc) while bytes
are in flight, the subtraction can underflow and produce a large
positive value, potentially allowing more data to be queued than the
peer can handle.
Reuse virtio_transport_has_space() which already handles this case and
add a comment to make it clear why we are doing that.
[Stefano: use virtio_transport_has_space() instead of duplicating the code]
[Stefano: tweak the commit message] |
| In the Linux kernel, the following vulnerability has been resolved:
spi: spi-sprd-adi: Fix double free in probe error path
The driver currently uses spi_alloc_host() to allocate the controller
but registers it using devm_spi_register_controller().
If devm_register_restart_handler() fails, the code jumps to the
put_ctlr label and calls spi_controller_put(). However, since the
controller was registered via a devm function, the device core will
automatically call spi_controller_put() again when the probe fails.
This results in a double-free of the spi_controller structure.
Fix this by switching to devm_spi_alloc_host() and removing the
manual spi_controller_put() call. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/io-pgtable-arm: fix size_t signedness bug in unmap path
__arm_lpae_unmap() returns size_t but was returning -ENOENT (negative
error code) when encountering an unmapped PTE. Since size_t is unsigned,
-ENOENT (typically -2) becomes a huge positive value (0xFFFFFFFFFFFFFFFE
on 64-bit systems).
This corrupted value propagates through the call chain:
__arm_lpae_unmap() returns -ENOENT as size_t
-> arm_lpae_unmap_pages() returns it
-> __iommu_unmap() adds it to iova address
-> iommu_pgsize() triggers BUG_ON due to corrupted iova
This can cause IOVA address overflow in __iommu_unmap() loop and
trigger BUG_ON in iommu_pgsize() from invalid address alignment.
Fix by returning 0 instead of -ENOENT. The WARN_ON already signals
the error condition, and returning 0 (meaning "nothing unmapped")
is the correct semantic for size_t return type. This matches the
behavior of other io-pgtable implementations (io-pgtable-arm-v7s,
io-pgtable-dart) which return 0 on error conditions. |
| In the Linux kernel, the following vulnerability has been resolved:
rxrpc: Fix recvmsg() unconditional requeue
If rxrpc_recvmsg() fails because MSG_DONTWAIT was specified but the call at
the front of the recvmsg queue already has its mutex locked, it requeues
the call - whether or not the call is already queued. The call may be on
the queue because MSG_PEEK was also passed and so the call was not dequeued
or because the I/O thread requeued it.
The unconditional requeue may then corrupt the recvmsg queue, leading to
things like UAFs or refcount underruns.
Fix this by only requeuing the call if it isn't already on the queue - and
moving it to the front if it is already queued. If we don't queue it, we
have to put the ref we obtained by dequeuing it.
Also, MSG_PEEK doesn't dequeue the call so shouldn't call
rxrpc_notify_socket() for the call if we didn't use up all the data on the
queue, so fix that also. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86/amd: Fix memory leak in wbrf_record()
The tmp buffer is allocated using kcalloc() but is not freed if
acpi_evaluate_dsm() fails. This causes a memory leak in the error path.
Fix this by explicitly freeing the tmp buffer in the error handling
path of acpi_evaluate_dsm(). |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: act_ife: avoid possible NULL deref
tcf_ife_encode() must make sure ife_encode() does not return NULL.
syzbot reported:
Oops: general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
RIP: 0010:ife_tlv_meta_encode+0x41/0xa0 net/ife/ife.c:166
CPU: 3 UID: 0 PID: 8990 Comm: syz.0.696 Not tainted syzkaller #0 PREEMPT(full)
Call Trace:
<TASK>
ife_encode_meta_u32+0x153/0x180 net/sched/act_ife.c:101
tcf_ife_encode net/sched/act_ife.c:841 [inline]
tcf_ife_act+0x1022/0x1de0 net/sched/act_ife.c:877
tc_act include/net/tc_wrapper.h:130 [inline]
tcf_action_exec+0x1c0/0xa20 net/sched/act_api.c:1152
tcf_exts_exec include/net/pkt_cls.h:349 [inline]
mall_classify+0x1a0/0x2a0 net/sched/cls_matchall.c:42
tc_classify include/net/tc_wrapper.h:197 [inline]
__tcf_classify net/sched/cls_api.c:1764 [inline]
tcf_classify+0x7f2/0x1380 net/sched/cls_api.c:1860
multiq_classify net/sched/sch_multiq.c:39 [inline]
multiq_enqueue+0xe0/0x510 net/sched/sch_multiq.c:66
dev_qdisc_enqueue+0x45/0x250 net/core/dev.c:4147
__dev_xmit_skb net/core/dev.c:4262 [inline]
__dev_queue_xmit+0x2998/0x46c0 net/core/dev.c:4798 |