Search Results (16992 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50516 1 Linux 1 Linux Kernel 2026-02-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs: dlm: fix invalid derefence of sb_lvbptr I experience issues when putting a lkbsb on the stack and have sb_lvbptr field to a dangled pointer while not using DLM_LKF_VALBLK. It will crash with the following kernel message, the dangled pointer is here 0xdeadbeef as example: [ 102.749317] BUG: unable to handle page fault for address: 00000000deadbeef [ 102.749320] #PF: supervisor read access in kernel mode [ 102.749323] #PF: error_code(0x0000) - not-present page [ 102.749325] PGD 0 P4D 0 [ 102.749332] Oops: 0000 [#1] PREEMPT SMP PTI [ 102.749336] CPU: 0 PID: 1567 Comm: lock_torture_wr Tainted: G W 5.19.0-rc3+ #1565 [ 102.749343] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.16.0-2.module+el8.7.0+15506+033991b0 04/01/2014 [ 102.749344] RIP: 0010:memcpy_erms+0x6/0x10 [ 102.749353] Code: cc cc cc cc eb 1e 0f 1f 00 48 89 f8 48 89 d1 48 c1 e9 03 83 e2 07 f3 48 a5 89 d1 f3 a4 c3 66 0f 1f 44 00 00 48 89 f8 48 89 d1 <f3> a4 c3 0f 1f 80 00 00 00 00 48 89 f8 48 83 fa 20 72 7e 40 38 fe [ 102.749355] RSP: 0018:ffff97a58145fd08 EFLAGS: 00010202 [ 102.749358] RAX: ffff901778b77070 RBX: 0000000000000000 RCX: 0000000000000040 [ 102.749360] RDX: 0000000000000040 RSI: 00000000deadbeef RDI: ffff901778b77070 [ 102.749362] RBP: ffff97a58145fd10 R08: ffff901760b67a70 R09: 0000000000000001 [ 102.749364] R10: ffff9017008e2cb8 R11: 0000000000000001 R12: ffff901760b67a70 [ 102.749366] R13: ffff901760b78f00 R14: 0000000000000003 R15: 0000000000000001 [ 102.749368] FS: 0000000000000000(0000) GS:ffff901876e00000(0000) knlGS:0000000000000000 [ 102.749372] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 102.749374] CR2: 00000000deadbeef CR3: 000000017c49a004 CR4: 0000000000770ef0 [ 102.749376] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 102.749378] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 102.749379] PKRU: 55555554 [ 102.749381] Call Trace: [ 102.749382] <TASK> [ 102.749383] ? send_args+0xb2/0xd0 [ 102.749389] send_common+0xb7/0xd0 [ 102.749395] _unlock_lock+0x2c/0x90 [ 102.749400] unlock_lock.isra.56+0x62/0xa0 [ 102.749405] dlm_unlock+0x21e/0x330 [ 102.749411] ? lock_torture_stats+0x80/0x80 [dlm_locktorture] [ 102.749416] torture_unlock+0x5a/0x90 [dlm_locktorture] [ 102.749419] ? preempt_count_sub+0xba/0x100 [ 102.749427] lock_torture_writer+0xbd/0x150 [dlm_locktorture] [ 102.786186] kthread+0x10a/0x130 [ 102.786581] ? kthread_complete_and_exit+0x20/0x20 [ 102.787156] ret_from_fork+0x22/0x30 [ 102.787588] </TASK> [ 102.787855] Modules linked in: dlm_locktorture torture rpcsec_gss_krb5 intel_rapl_msr intel_rapl_common kvm_intel iTCO_wdt iTCO_vendor_support kvm vmw_vsock_virtio_transport qxl irqbypass vmw_vsock_virtio_transport_common drm_ttm_helper crc32_pclmul joydev crc32c_intel ttm vsock virtio_scsi virtio_balloon snd_pcm drm_kms_helper virtio_console snd_timer snd drm soundcore syscopyarea i2c_i801 sysfillrect sysimgblt i2c_smbus pcspkr fb_sys_fops lpc_ich serio_raw [ 102.792536] CR2: 00000000deadbeef [ 102.792930] ---[ end trace 0000000000000000 ]--- This patch fixes the issue by checking also on DLM_LKF_VALBLK on exflags is set when copying the lvbptr array instead of if it's just null which fixes for me the issue. I think this patch can fix other dlm users as well, depending how they handle the init, freeing memory handling of sb_lvbptr and don't set DLM_LKF_VALBLK for some dlm_lock() calls. It might a there could be a hidden issue all the time. However with checking on DLM_LKF_VALBLK the user always need to provide a sb_lvbptr non-null value. There might be more intelligent handling between per ls lvblen, DLM_LKF_VALBLK and non-null to report the user the way how DLM API is used is wrong but can be added for later, this will only fix the current behaviour.
CVE-2026-23211 1 Linux 1 Linux Kernel 2026-02-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm, swap: restore swap_space attr aviod kernel panic commit 8b47299a411a ("mm, swap: mark swap address space ro and add context debug check") made the swap address space read-only. It may lead to kernel panic if arch_prepare_to_swap returns a failure under heavy memory pressure as follows, el1_abort+0x40/0x64 el1h_64_sync_handler+0x48/0xcc el1h_64_sync+0x84/0x88 errseq_set+0x4c/0xb8 (P) __filemap_set_wb_err+0x20/0xd0 shrink_folio_list+0xc20/0x11cc evict_folios+0x1520/0x1be4 try_to_shrink_lruvec+0x27c/0x3dc shrink_one+0x9c/0x228 shrink_node+0xb3c/0xeac do_try_to_free_pages+0x170/0x4f0 try_to_free_pages+0x334/0x534 __alloc_pages_direct_reclaim+0x90/0x158 __alloc_pages_slowpath+0x334/0x588 __alloc_frozen_pages_noprof+0x224/0x2fc __folio_alloc_noprof+0x14/0x64 vma_alloc_zeroed_movable_folio+0x34/0x44 do_pte_missing+0xad4/0x1040 handle_mm_fault+0x4a4/0x790 do_page_fault+0x288/0x5f8 do_translation_fault+0x38/0x54 do_mem_abort+0x54/0xa8 Restore swap address space as not ro to avoid the panic.
CVE-2026-23212 1 Linux 1 Linux Kernel 2026-02-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bonding: annotate data-races around slave->last_rx slave->last_rx and slave->target_last_arp_rx[...] can be read and written locklessly. Add READ_ONCE() and WRITE_ONCE() annotations. syzbot reported: BUG: KCSAN: data-race in bond_rcv_validate / bond_rcv_validate write to 0xffff888149f0d428 of 8 bytes by interrupt on cpu 1: bond_rcv_validate+0x202/0x7a0 drivers/net/bonding/bond_main.c:3335 bond_handle_frame+0xde/0x5e0 drivers/net/bonding/bond_main.c:1533 __netif_receive_skb_core+0x5b1/0x1950 net/core/dev.c:6039 __netif_receive_skb_one_core net/core/dev.c:6150 [inline] __netif_receive_skb+0x59/0x270 net/core/dev.c:6265 netif_receive_skb_internal net/core/dev.c:6351 [inline] netif_receive_skb+0x4b/0x2d0 net/core/dev.c:6410 ... write to 0xffff888149f0d428 of 8 bytes by interrupt on cpu 0: bond_rcv_validate+0x202/0x7a0 drivers/net/bonding/bond_main.c:3335 bond_handle_frame+0xde/0x5e0 drivers/net/bonding/bond_main.c:1533 __netif_receive_skb_core+0x5b1/0x1950 net/core/dev.c:6039 __netif_receive_skb_one_core net/core/dev.c:6150 [inline] __netif_receive_skb+0x59/0x270 net/core/dev.c:6265 netif_receive_skb_internal net/core/dev.c:6351 [inline] netif_receive_skb+0x4b/0x2d0 net/core/dev.c:6410 br_netif_receive_skb net/bridge/br_input.c:30 [inline] NF_HOOK include/linux/netfilter.h:318 [inline] ... value changed: 0x0000000100005365 -> 0x0000000100005366
CVE-2025-71226 1 Linux 1 Linux Kernel 2026-02-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: Implement settime64 as stub for MVM/MLD PTP Since commit dfb073d32cac ("ptp: Return -EINVAL on ptp_clock_register if required ops are NULL"), PTP clock registered through ptp_clock_register is required to have ptp_clock_info.settime64 set, however, neither MVM nor MLD's PTP clock implementation sets it, resulting in warnings when the interface starts up, like WARNING: drivers/ptp/ptp_clock.c:325 at ptp_clock_register+0x2c8/0x6b8, CPU#1: wpa_supplicant/469 CPU: 1 UID: 0 PID: 469 Comm: wpa_supplicant Not tainted 6.18.0+ #101 PREEMPT(full) ra: ffff800002732cd4 iwl_mvm_ptp_init+0x114/0x188 [iwlmvm] ERA: 9000000002fdc468 ptp_clock_register+0x2c8/0x6b8 iwlwifi 0000:01:00.0: Failed to register PHC clock (-22) I don't find an appropriate firmware interface to implement settime64() for iwlwifi MLD/MVM, thus instead create a stub that returns -EOPTNOTSUPP only, suppressing the warning and allowing the PTP clock to be registered.
CVE-2025-71228 1 Linux 1 Linux Kernel 2026-02-19 N/A
In the Linux kernel, the following vulnerability has been resolved: LoongArch: Set correct protection_map[] for VM_NONE/VM_SHARED For 32BIT platform _PAGE_PROTNONE is 0, so set a VMA to be VM_NONE or VM_SHARED will make pages non-present, then cause Oops with kernel page fault. Fix it by set correct protection_map[] for VM_NONE/VM_SHARED, replacing _PAGE_PROTNONE with _PAGE_PRESENT.
CVE-2026-23218 1 Linux 1 Linux Kernel 2026-02-19 N/A
In the Linux kernel, the following vulnerability has been resolved: gpio: loongson-64bit: Fix incorrect NULL check after devm_kcalloc() Fix incorrect NULL check in loongson_gpio_init_irqchip(). The function checks chip->parent instead of chip->irq.parents.
CVE-2026-23219 1 Linux 1 Linux Kernel 2026-02-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/slab: Add alloc_tagging_slab_free_hook for memcg_alloc_abort_single When CONFIG_MEM_ALLOC_PROFILING_DEBUG is enabled, the following warning may be noticed: [ 3959.023862] ------------[ cut here ]------------ [ 3959.023891] alloc_tag was not cleared (got tag for lib/xarray.c:378) [ 3959.023947] WARNING: ./include/linux/alloc_tag.h:155 at alloc_tag_add+0x128/0x178, CPU#6: mkfs.ntfs/113998 [ 3959.023978] Modules linked in: dns_resolver tun brd overlay exfat btrfs blake2b libblake2b xor xor_neon raid6_pq loop sctp ip6_udp_tunnel udp_tunnel ext4 crc16 mbcache jbd2 rfkill sunrpc vfat fat sg fuse nfnetlink sr_mod virtio_gpu cdrom drm_client_lib virtio_dma_buf drm_shmem_helper drm_kms_helper ghash_ce drm sm4 backlight virtio_net net_failover virtio_scsi failover virtio_console virtio_blk virtio_mmio dm_mirror dm_region_hash dm_log dm_multipath dm_mod i2c_dev aes_neon_bs aes_ce_blk [last unloaded: hwpoison_inject] [ 3959.024170] CPU: 6 UID: 0 PID: 113998 Comm: mkfs.ntfs Kdump: loaded Tainted: G W 6.19.0-rc7+ #7 PREEMPT(voluntary) [ 3959.024182] Tainted: [W]=WARN [ 3959.024186] Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 [ 3959.024192] pstate: 604000c5 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 3959.024199] pc : alloc_tag_add+0x128/0x178 [ 3959.024207] lr : alloc_tag_add+0x128/0x178 [ 3959.024214] sp : ffff80008b696d60 [ 3959.024219] x29: ffff80008b696d60 x28: 0000000000000000 x27: 0000000000000240 [ 3959.024232] x26: 0000000000000000 x25: 0000000000000240 x24: ffff800085d17860 [ 3959.024245] x23: 0000000000402800 x22: ffff0000c0012dc0 x21: 00000000000002d0 [ 3959.024257] x20: ffff0000e6ef3318 x19: ffff800085ae0410 x18: 0000000000000000 [ 3959.024269] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 [ 3959.024281] x14: 0000000000000000 x13: 0000000000000001 x12: ffff600064101293 [ 3959.024292] x11: 1fffe00064101292 x10: ffff600064101292 x9 : dfff800000000000 [ 3959.024305] x8 : 00009fff9befed6e x7 : ffff000320809493 x6 : 0000000000000001 [ 3959.024316] x5 : ffff000320809490 x4 : ffff600064101293 x3 : ffff800080691838 [ 3959.024328] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0000d5bcd640 [ 3959.024340] Call trace: [ 3959.024346] alloc_tag_add+0x128/0x178 (P) [ 3959.024355] __alloc_tagging_slab_alloc_hook+0x11c/0x1a8 [ 3959.024362] kmem_cache_alloc_lru_noprof+0x1b8/0x5e8 [ 3959.024369] xas_alloc+0x304/0x4f0 [ 3959.024381] xas_create+0x1e0/0x4a0 [ 3959.024388] xas_store+0x68/0xda8 [ 3959.024395] __filemap_add_folio+0x5b0/0xbd8 [ 3959.024409] filemap_add_folio+0x16c/0x7e0 [ 3959.024416] __filemap_get_folio_mpol+0x2dc/0x9e8 [ 3959.024424] iomap_get_folio+0xfc/0x180 [ 3959.024435] __iomap_get_folio+0x2f8/0x4b8 [ 3959.024441] iomap_write_begin+0x198/0xc18 [ 3959.024448] iomap_write_iter+0x2ec/0x8f8 [ 3959.024454] iomap_file_buffered_write+0x19c/0x290 [ 3959.024461] blkdev_write_iter+0x38c/0x978 [ 3959.024470] vfs_write+0x4d4/0x928 [ 3959.024482] ksys_write+0xfc/0x1f8 [ 3959.024489] __arm64_sys_write+0x74/0xb0 [ 3959.024496] invoke_syscall+0xd4/0x258 [ 3959.024507] el0_svc_common.constprop.0+0xb4/0x240 [ 3959.024514] do_el0_svc+0x48/0x68 [ 3959.024520] el0_svc+0x40/0xf8 [ 3959.024526] el0t_64_sync_handler+0xa0/0xe8 [ 3959.024533] el0t_64_sync+0x1ac/0x1b0 [ 3959.024540] ---[ end trace 0000000000000000 ]--- When __memcg_slab_post_alloc_hook() fails, there are two different free paths depending on whether size == 1 or size != 1. In the kmem_cache_free_bulk() path, we do call alloc_tagging_slab_free_hook(). However, in memcg_alloc_abort_single() we don't, the above warning will be triggered on the next allocation. Therefore, add alloc_tagging_slab_free_hook() to the memcg_alloc_abort_single() path.
CVE-2025-71229 1 Linux 1 Linux Kernel 2026-02-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: rtw88: Fix alignment fault in rtw_core_enable_beacon() rtw_core_enable_beacon() reads 4 bytes from an address that is not a multiple of 4. This results in a crash on some systems. Do 1 byte reads/writes instead. Unable to handle kernel paging request at virtual address ffff8000827e0522 Mem abort info: ESR = 0x0000000096000021 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x21: alignment fault Data abort info: ISV = 0, ISS = 0x00000021, ISS2 = 0x00000000 CM = 0, WnR = 0, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 swapper pgtable: 4k pages, 48-bit VAs, pgdp=0000000005492000 [ffff8000827e0522] pgd=0000000000000000, p4d=10000001021d9403, pud=10000001021da403, pmd=100000011061c403, pte=00780000f3200f13 Internal error: Oops: 0000000096000021 [#1] SMP Modules linked in: [...] rtw88_8822ce rtw88_8822c rtw88_pci rtw88_core [...] CPU: 0 UID: 0 PID: 73 Comm: kworker/u32:2 Tainted: G W 6.17.9 #1-NixOS VOLUNTARY Tainted: [W]=WARN Hardware name: FriendlyElec NanoPC-T6 LTS (DT) Workqueue: phy0 rtw_c2h_work [rtw88_core] pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : rtw_pci_read32+0x18/0x40 [rtw88_pci] lr : rtw_core_enable_beacon+0xe0/0x148 [rtw88_core] sp : ffff800080cc3ca0 x29: ffff800080cc3ca0 x28: ffff0001031fc240 x27: ffff000102100828 x26: ffffd2cb7c9b4088 x25: ffff0001031fc2c0 x24: ffff000112fdef00 x23: ffff000112fdef18 x22: ffff000111c29970 x21: 0000000000000001 x20: 0000000000000001 x19: ffff000111c22040 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 x11: 0000000000000000 x10: 0000000000000000 x9 : ffffd2cb6507c090 x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000 x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000 x2 : 0000000000007f10 x1 : 0000000000000522 x0 : ffff8000827e0522 Call trace: rtw_pci_read32+0x18/0x40 [rtw88_pci] (P) rtw_hw_scan_chan_switch+0x124/0x1a8 [rtw88_core] rtw_fw_c2h_cmd_handle+0x254/0x290 [rtw88_core] rtw_c2h_work+0x50/0x98 [rtw88_core] process_one_work+0x178/0x3f8 worker_thread+0x208/0x418 kthread+0x120/0x220 ret_from_fork+0x10/0x20 Code: d28fe202 8b020000 f9524400 8b214000 (b9400000) ---[ end trace 0000000000000000 ]---
CVE-2025-71230 1 Linux 1 Linux Kernel 2026-02-19 N/A
In the Linux kernel, the following vulnerability has been resolved: hfs: ensure sb->s_fs_info is always cleaned up When hfs was converted to the new mount api a bug was introduced by changing the allocation pattern of sb->s_fs_info. If setup_bdev_super() fails after a new superblock has been allocated by sget_fc(), but before hfs_fill_super() takes ownership of the filesystem-specific s_fs_info data it was leaked. Fix this by freeing sb->s_fs_info in hfs_kill_super().
CVE-2025-71231 1 Linux 1 Linux Kernel 2026-02-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: crypto: iaa - Fix out-of-bounds index in find_empty_iaa_compression_mode The local variable 'i' is initialized with -EINVAL, but the for loop immediately overwrites it and -EINVAL is never returned. If no empty compression mode can be found, the function would return the out-of-bounds index IAA_COMP_MODES_MAX, which would cause an invalid array access in add_iaa_compression_mode(). Fix both issues by returning either a valid index or -EINVAL.
CVE-2025-71234 1 Linux 1 Linux Kernel 2026-02-19 5.8 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: rtl8xxxu: fix slab-out-of-bounds in rtl8xxxu_sta_add The driver does not set hw->sta_data_size, which causes mac80211 to allocate insufficient space for driver private station data in __sta_info_alloc(). When rtl8xxxu_sta_add() accesses members of struct rtl8xxxu_sta_info through sta->drv_priv, this results in a slab-out-of-bounds write. KASAN report on RISC-V (VisionFive 2) with RTL8192EU adapter: BUG: KASAN: slab-out-of-bounds in rtl8xxxu_sta_add+0x31c/0x346 Write of size 8 at addr ffffffd6d3e9ae88 by task kworker/u16:0/12 Set hw->sta_data_size to sizeof(struct rtl8xxxu_sta_info) during probe, similar to how hw->vif_data_size is configured. This ensures mac80211 allocates sufficient space for the driver's per-station private data. Tested on StarFive VisionFive 2 v1.2A board.
CVE-2026-23223 1 Linux 1 Linux Kernel 2026-02-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: xfs: fix UAF in xchk_btree_check_block_owner We cannot dereference bs->cur when trying to determine if bs->cur aliases bs->sc->sa.{bno,rmap}_cur after the latter has been freed. Fix this by sampling before type before any freeing could happen. The correct temporal ordering was broken when we removed xfs_btnum_t.
CVE-2026-23224 1 Linux 1 Linux Kernel 2026-02-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: erofs: fix UAF issue for file-backed mounts w/ directio option [ 9.269940][ T3222] Call trace: [ 9.269948][ T3222] ext4_file_read_iter+0xac/0x108 [ 9.269979][ T3222] vfs_iocb_iter_read+0xac/0x198 [ 9.269993][ T3222] erofs_fileio_rq_submit+0x12c/0x180 [ 9.270008][ T3222] erofs_fileio_submit_bio+0x14/0x24 [ 9.270030][ T3222] z_erofs_runqueue+0x834/0x8ac [ 9.270054][ T3222] z_erofs_read_folio+0x120/0x220 [ 9.270083][ T3222] filemap_read_folio+0x60/0x120 [ 9.270102][ T3222] filemap_fault+0xcac/0x1060 [ 9.270119][ T3222] do_pte_missing+0x2d8/0x1554 [ 9.270131][ T3222] handle_mm_fault+0x5ec/0x70c [ 9.270142][ T3222] do_page_fault+0x178/0x88c [ 9.270167][ T3222] do_translation_fault+0x38/0x54 [ 9.270183][ T3222] do_mem_abort+0x54/0xac [ 9.270208][ T3222] el0_da+0x44/0x7c [ 9.270227][ T3222] el0t_64_sync_handler+0x5c/0xf4 [ 9.270253][ T3222] el0t_64_sync+0x1bc/0x1c0 EROFS may encounter above panic when enabling file-backed mount w/ directio mount option, the root cause is it may suffer UAF in below race condition: - z_erofs_read_folio wq s_dio_done_wq - z_erofs_runqueue - erofs_fileio_submit_bio - erofs_fileio_rq_submit - vfs_iocb_iter_read - ext4_file_read_iter - ext4_dio_read_iter - iomap_dio_rw : bio was submitted and return -EIOCBQUEUED - dio_aio_complete_work - dio_complete - dio->iocb->ki_complete (erofs_fileio_ki_complete()) - kfree(rq) : it frees iocb, iocb.ki_filp can be UAF in file_accessed(). - file_accessed : access NULL file point Introduce a reference count in struct erofs_fileio_rq, and initialize it as two, both erofs_fileio_ki_complete() and erofs_fileio_rq_submit() will decrease reference count, the last one decreasing the reference count to zero will free rq.
CVE-2026-23225 1 Linux 1 Linux Kernel 2026-02-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: sched/mmcid: Don't assume CID is CPU owned on mode switch Shinichiro reported a KASAN UAF, which is actually an out of bounds access in the MMCID management code. CPU0 CPU1 T1 runs in userspace T0: fork(T4) -> Switch to per CPU CID mode fixup() set MM_CID_TRANSIT on T1/CPU1 T4 exit() T3 exit() T2 exit() T1 exit() switch to per task mode ---> Out of bounds access. As T1 has not scheduled after T0 set the TRANSIT bit, it exits with the TRANSIT bit set. sched_mm_cid_remove_user() clears the TRANSIT bit in the task and drops the CID, but it does not touch the per CPU storage. That's functionally correct because a CID is only owned by the CPU when the ONCPU bit is set, which is mutually exclusive with the TRANSIT flag. Now sched_mm_cid_exit() assumes that the CID is CPU owned because the prior mode was per CPU. It invokes mm_drop_cid_on_cpu() which clears the not set ONCPU bit and then invokes clear_bit() with an insanely large bit number because TRANSIT is set (bit 29). Prevent that by actually validating that the CID is CPU owned in mm_drop_cid_on_cpu().
CVE-2025-33088 2 Ibm, Linux 2 Concert, Linux Kernel 2026-02-18 7.4 High
IBM Concert 1.0.0 through 2.1.0 could allow a local user with specific knowledge about the system's architecture to escalate their privileges due to incorrect file permissions for critical resources.
CVE-2024-43178 2 Ibm, Linux 2 Concert, Linux Kernel 2026-02-18 5.9 Medium
IBM Concert 1.0.0 through 2.1.0 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information.
CVE-2025-36018 2 Ibm, Linux 2 Concert, Linux Kernel 2026-02-18 6.5 Medium
IBM Concert 1.0.0 through 2.1.0 for Z hub componentĀ is vulnerable to cross-site request forgery which could allow an attacker to execute malicious and unauthorized actions transmitted from a user that the website trusts.
CVE-2025-36019 2 Ibm, Linux 2 Concert, Linux Kernel 2026-02-18 6.1 Medium
IBM Concert 1.0.0 through 2.1.0 for Z hub framework is vulnerable to cross-site scripting. This vulnerability allows an unauthenticated attacker to embed arbitrary JavaScript code in the Web UI thus altering the intended functionality potentially leading to credentials disclosure within a trusted session.
CVE-2023-33951 2 Linux, Redhat 5 Linux Kernel, Enterprise Linux, Enterprise Linux For Real Time and 2 more 2026-02-18 6.7 Medium
A race condition vulnerability was found in the vmwgfx driver in the Linux kernel. The flaw exists within the handling of GEM objects. The issue results from improper locking when performing operations on an object. This flaw allows a local privileged user to disclose information in the context of the kernel.
CVE-2023-6546 3 Fedoraproject, Linux, Redhat 9 Fedora, Linux Kernel, Enterprise Linux and 6 more 2026-02-18 7 High
A race condition was found in the GSM 0710 tty multiplexor in the Linux kernel. This issue occurs when two threads execute the GSMIOC_SETCONF ioctl on the same tty file descriptor with the gsm line discipline enabled, and can lead to a use-after-free problem on a struct gsm_dlci while restarting the gsm mux. This could allow a local unprivileged user to escalate their privileges on the system.