| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
sched_ext: Fix possible deadlock in the deferred_irq_workfn()
For PREEMPT_RT=y kernels, the deferred_irq_workfn() is executed in
the per-cpu irq_work/* task context and not disable-irq, if the rq
returned by container_of() is current CPU's rq, the following scenarios
may occur:
lock(&rq->__lock);
<Interrupt>
lock(&rq->__lock);
This commit use IRQ_WORK_INIT_HARD() to replace init_irq_work() to
initialize rq->scx.deferred_irq_work, make the deferred_irq_workfn()
is always invoked in hard-irq context. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: c6xdigio: Fix invalid PNP driver unregistration
The Comedi low-level driver "c6xdigio" seems to be for a parallel port
connected device. When the Comedi core calls the driver's Comedi
"attach" handler `c6xdigio_attach()` to configure a Comedi to use this
driver, it tries to enable the parallel port PNP resources by
registering a PNP driver with `pnp_register_driver()`, but ignores the
return value. (The `struct pnp_driver` it uses has only the `name` and
`id_table` members filled in.) The driver's Comedi "detach" handler
`c6xdigio_detach()` unconditionally unregisters the PNP driver with
`pnp_unregister_driver()`.
It is possible for `c6xdigio_attach()` to return an error before it
calls `pnp_register_driver()` and it is possible for the call to
`pnp_register_driver()` to return an error (that is ignored). In both
cases, the driver should not be calling `pnp_unregister_driver()` as it
does in `c6xdigio_detach()`. (Note that `c6xdigio_detach()` will be
called by the Comedi core if `c6xdigio_attach()` returns an error, or if
the Comedi core decides to detach the Comedi device from the driver for
some other reason.)
The unconditional call to `pnp_unregister_driver()` without a previous
successful call to `pnp_register_driver()` will cause
`driver_unregister()` to issue a warning "Unexpected driver
unregister!". This was detected by Syzbot [1].
Also, the PNP driver registration and unregistration should be done at
module init and exit time, respectively, not when attaching or detaching
Comedi devices to the driver. (There might be more than one Comedi
device being attached to the driver, although that is unlikely.)
Change the driver to do the PNP driver registration at module init time,
and the unregistration at module exit time. Since `c6xdigio_detach()`
now only calls `comedi_legacy_detach()`, remove the function and change
the Comedi driver "detach" handler to `comedi_legacy_detach`.
-------------------------------------------
[1] Syzbot sample crash report:
Unexpected driver unregister!
WARNING: CPU: 0 PID: 5970 at drivers/base/driver.c:273 driver_unregister drivers/base/driver.c:273 [inline]
WARNING: CPU: 0 PID: 5970 at drivers/base/driver.c:273 driver_unregister+0x90/0xb0 drivers/base/driver.c:270
Modules linked in:
CPU: 0 UID: 0 PID: 5970 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/02/2025
RIP: 0010:driver_unregister drivers/base/driver.c:273 [inline]
RIP: 0010:driver_unregister+0x90/0xb0 drivers/base/driver.c:270
Code: 48 89 ef e8 c2 e6 82 fc 48 89 df e8 3a 93 ff ff 5b 5d e9 c3 6d d9 fb e8 be 6d d9 fb 90 48 c7 c7 e0 f8 1f 8c e8 51 a2 97 fb 90 <0f> 0b 90 90 5b 5d e9 a5 6d d9 fb e8 e0 f4 41 fc eb 94 e8 d9 f4 41
RSP: 0018:ffffc9000373f9a0 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffffffff8ff24720 RCX: ffffffff817b6ee8
RDX: ffff88807c932480 RSI: ffffffff817b6ef5 RDI: 0000000000000001
RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000001 R12: ffffffff8ff24660
R13: dffffc0000000000 R14: 0000000000000000 R15: ffff88814cca0000
FS: 000055556dab1500(0000) GS:ffff8881249d9000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055f77f285cd0 CR3: 000000007d871000 CR4: 00000000003526f0
Call Trace:
<TASK>
comedi_device_detach_locked+0x12f/0xa50 drivers/comedi/drivers.c:207
comedi_device_detach+0x67/0xb0 drivers/comedi/drivers.c:215
comedi_device_attach+0x43d/0x900 drivers/comedi/drivers.c:1011
do_devconfig_ioctl+0x1b1/0x710 drivers/comedi/comedi_fops.c:872
comedi_unlocked_ioctl+0x165d/0x2f00 drivers/comedi/comedi_fops.c:2178
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:597 [inline]
__se_sys_ioctl fs/ioctl.c:583 [inline]
__x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:583
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_sys
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
usb: uas: fix urb unmapping issue when the uas device is remove during ongoing data transfer
When a UAS device is unplugged during data transfer, there is
a probability of a system panic occurring. The root cause is
an access to an invalid memory address during URB callback handling.
Specifically, this happens when the dma_direct_unmap_sg() function
is called within the usb_hcd_unmap_urb_for_dma() interface, but the
sg->dma_address field is 0 and the sg data structure has already been
freed.
The SCSI driver sends transfer commands by invoking uas_queuecommand_lck()
in uas.c, using the uas_submit_urbs() function to submit requests to USB.
Within the uas_submit_urbs() implementation, three URBs (sense_urb,
data_urb, and cmd_urb) are sequentially submitted. Device removal may
occur at any point during uas_submit_urbs execution, which may result
in URB submission failure. However, some URBs might have been successfully
submitted before the failure, and uas_submit_urbs will return the -ENODEV
error code in this case. The current error handling directly calls
scsi_done(). In the SCSI driver, this eventually triggers scsi_complete()
to invoke scsi_end_request() for releasing the sgtable. The successfully
submitted URBs, when being unlinked to giveback, call
usb_hcd_unmap_urb_for_dma() in hcd.c, leading to exceptions during sg
unmapping operations since the sg data structure has already been freed.
This patch modifies the error condition check in the uas_submit_urbs()
function. When a UAS device is removed but one or more URBs have already
been successfully submitted to USB, it avoids immediately invoking
scsi_done() and save the cmnd to devinfo->cmnd array. If the successfully
submitted URBs is completed before devinfo->resetting being set, then
the scsi_done() function will be called within uas_try_complete() after
all pending URB operations are finalized. Otherwise, the scsi_done()
function will be called within uas_zap_pending(), which is executed after
usb_kill_anchored_urbs().
The error handling only takes effect when uas_queuecommand_lck() calls
uas_submit_urbs() and returns the error value -ENODEV . In this case,
the device is disconnected, and the flow proceeds to uas_disconnect(),
where uas_zap_pending() is invoked to call uas_try_complete(). |
| In the Linux kernel, the following vulnerability has been resolved:
iio: accel: bmc150: Fix irq assumption regression
The code in bmc150-accel-core.c unconditionally calls
bmc150_accel_set_interrupt() in the iio_buffer_setup_ops,
such as on the runtime PM resume path giving a kernel
splat like this if the device has no interrupts:
Unable to handle kernel NULL pointer dereference at virtual
address 00000001 when read
PC is at bmc150_accel_set_interrupt+0x98/0x194
LR is at __pm_runtime_resume+0x5c/0x64
(...)
Call trace:
bmc150_accel_set_interrupt from bmc150_accel_buffer_postenable+0x40/0x108
bmc150_accel_buffer_postenable from __iio_update_buffers+0xbe0/0xcbc
__iio_update_buffers from enable_store+0x84/0xc8
enable_store from kernfs_fop_write_iter+0x154/0x1b4
This bug seems to have been in the driver since the beginning,
but it only manifests recently, I do not know why.
Store the IRQ number in the state struct, as this is a common
pattern in other drivers, then use this to determine if we have
IRQ support or not. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix WARN_ON in tracing_buffers_mmap_close for split VMAs
When a VMA is split (e.g., by partial munmap or MAP_FIXED), the kernel
calls vm_ops->close on each portion. For trace buffer mappings, this
results in ring_buffer_unmap() being called multiple times while
ring_buffer_map() was only called once.
This causes ring_buffer_unmap() to return -ENODEV on subsequent calls
because user_mapped is already 0, triggering a WARN_ON.
Trace buffer mappings cannot support partial mappings because the ring
buffer structure requires the complete buffer including the meta page.
Fix this by adding a may_split callback that returns -EINVAL to prevent
VMA splits entirely. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: stratix10-svc: fix bug in saving controller data
Fix the incorrect usage of platform_set_drvdata and dev_set_drvdata. They
both are of the same data and overrides each other. This resulted in the
rmmod of the svc driver to fail and throw a kernel panic for kthread_stop
and fifo free. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: renesas_usbhs: Fix synchronous external abort on unbind
A synchronous external abort occurs on the Renesas RZ/G3S SoC if unbind is
executed after the configuration sequence described above:
modprobe usb_f_ecm
modprobe libcomposite
modprobe configfs
cd /sys/kernel/config/usb_gadget
mkdir -p g1
cd g1
echo "0x1d6b" > idVendor
echo "0x0104" > idProduct
mkdir -p strings/0x409
echo "0123456789" > strings/0x409/serialnumber
echo "Renesas." > strings/0x409/manufacturer
echo "Ethernet Gadget" > strings/0x409/product
mkdir -p functions/ecm.usb0
mkdir -p configs/c.1
mkdir -p configs/c.1/strings/0x409
echo "ECM" > configs/c.1/strings/0x409/configuration
if [ ! -L configs/c.1/ecm.usb0 ]; then
ln -s functions/ecm.usb0 configs/c.1
fi
echo 11e20000.usb > UDC
echo 11e20000.usb > /sys/bus/platform/drivers/renesas_usbhs/unbind
The displayed trace is as follows:
Internal error: synchronous external abort: 0000000096000010 [#1] SMP
CPU: 0 UID: 0 PID: 188 Comm: sh Tainted: G M 6.17.0-rc7-next-20250922-00010-g41050493b2bd #55 PREEMPT
Tainted: [M]=MACHINE_CHECK
Hardware name: Renesas SMARC EVK version 2 based on r9a08g045s33 (DT)
pstate: 604000c5 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : usbhs_sys_function_pullup+0x10/0x40 [renesas_usbhs]
lr : usbhsg_update_pullup+0x3c/0x68 [renesas_usbhs]
sp : ffff8000838b3920
x29: ffff8000838b3920 x28: ffff00000d585780 x27: 0000000000000000
x26: 0000000000000000 x25: 0000000000000000 x24: ffff00000c3e3810
x23: ffff00000d5e5c80 x22: ffff00000d5e5d40 x21: 0000000000000000
x20: 0000000000000000 x19: ffff00000d5e5c80 x18: 0000000000000020
x17: 2e30303230316531 x16: 312d7968703a7968 x15: 3d454d414e5f4344
x14: 000000000000002c x13: 0000000000000000 x12: 0000000000000000
x11: ffff00000f358f38 x10: ffff00000f358db0 x9 : ffff00000b41f418
x8 : 0101010101010101 x7 : 7f7f7f7f7f7f7f7f x6 : fefefeff6364626d
x5 : 8080808000000000 x4 : 000000004b5ccb9d x3 : 0000000000000000
x2 : 0000000000000000 x1 : ffff800083790000 x0 : ffff00000d5e5c80
Call trace:
usbhs_sys_function_pullup+0x10/0x40 [renesas_usbhs] (P)
usbhsg_pullup+0x4c/0x7c [renesas_usbhs]
usb_gadget_disconnect_locked+0x48/0xd4
gadget_unbind_driver+0x44/0x114
device_remove+0x4c/0x80
device_release_driver_internal+0x1c8/0x224
device_release_driver+0x18/0x24
bus_remove_device+0xcc/0x10c
device_del+0x14c/0x404
usb_del_gadget+0x88/0xc0
usb_del_gadget_udc+0x18/0x30
usbhs_mod_gadget_remove+0x24/0x44 [renesas_usbhs]
usbhs_mod_remove+0x20/0x30 [renesas_usbhs]
usbhs_remove+0x98/0xdc [renesas_usbhs]
platform_remove+0x20/0x30
device_remove+0x4c/0x80
device_release_driver_internal+0x1c8/0x224
device_driver_detach+0x18/0x24
unbind_store+0xb4/0xb8
drv_attr_store+0x24/0x38
sysfs_kf_write+0x7c/0x94
kernfs_fop_write_iter+0x128/0x1b8
vfs_write+0x2ac/0x350
ksys_write+0x68/0xfc
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x48/0x110
el0_svc_common.constprop.0+0xc0/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x34/0xf0
el0t_64_sync_handler+0xa0/0xe4
el0t_64_sync+0x198/0x19c
Code: 7100003f 1a9f07e1 531c6c22 f9400001 (79400021)
---[ end trace 0000000000000000 ]---
note: sh[188] exited with irqs disabled
note: sh[188] exited with preempt_count 1
The issue occurs because usbhs_sys_function_pullup(), which accesses the IP
registers, is executed after the USBHS clocks have been disabled. The
problem is reproducible on the Renesas RZ/G3S SoC starting with the
addition of module stop in the clock enable/disable APIs. With module stop
functionality enabled, a bus error is expected if a master accesses a
module whose clock has been stopped and module stop activated.
Disable the IP clocks at the end of remove. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/guc: Fix stack_depot usage
Add missing stack_depot_init() call when CONFIG_DRM_XE_DEBUG_GUC is
enabled to fix the following call stack:
[] BUG: kernel NULL pointer dereference, address: 0000000000000000
[] Workqueue: drm_sched_run_job_work [gpu_sched]
[] RIP: 0010:stack_depot_save_flags+0x172/0x870
[] Call Trace:
[] <TASK>
[] fast_req_track+0x58/0xb0 [xe]
(cherry picked from commit 64fdf496a6929a0a194387d2bb5efaf5da2b542f) |
| An issue was discovered in K7 Ultimate Security 17.0.2045. A Local Privilege Escalation (LPE) vulnerability in the K7 Ultimate Security antivirus can be exploited by a local unprivileged user on default installations of the product. Insecure access to a named pipe allows unprivileged users to edit any registry key, leading to a full compromise as SYSTEM. |
| Schlix CMS before v2.2.9-5 is vulnerable to Cross Site Scripting (XSS). Due to lack of javascript sanitization in the login form, incorrect login attempts in logs are triggered as XSS in the admin panel. |
| In Delphix Continuous Compliance version 2025.3.0 and later, following a recent bug fix to correctly handle CR+LF (Windows and DOS) End-of-Record (EOR) characters in delimited files, an issue was identified: using an incorrect EOR configuration can cause inaccurate parsing and leave personally identifiable information (PII) unmasked. |
| BrainyCP 1.0 contains an authenticated remote code execution vulnerability that allows logged-in users to inject arbitrary commands through the crontab configuration interface. Attackers can exploit the crontab endpoint by adding a malicious command that spawns a reverse shell to a specified IP and port. |
| A vulnerability was identified in floooh sokol up to 5d11344150973f15e16d3ec4ee7550a73fb995e0. The impacted element is the function _sg_validate_pipeline_desc in the library sokol_gfx.h. Such manipulation leads to stack-based buffer overflow. The attack must be carried out locally. The exploit is publicly available and might be used. This product utilizes a rolling release system for continuous delivery, and as such, version information for affected or updated releases is not disclosed. The name of the patch is b95c5245ba357967220c9a860c7578a7487937b0. It is best practice to apply a patch to resolve this issue. |
| A security flaw has been discovered in loganhong php loganSite up to c035fb5c3edd0b2a5e32fd4051cbbc9e61a31426. This affects an unknown function of the file /includes/article_detail.php of the component Article Handler. Performing manipulation of the argument ID results in sql injection. It is possible to initiate the attack remotely. This product is using a rolling release to provide continious delivery. Therefore, no version details for affected nor updated releases are available. |
| Missing Authentication for Critical Function vulnerability in Sharp Display Solutions Media Player MP-01 All Verisons allows a attacker may access to the web interface of the affected product without authentication and change settings or perform other operations, and deliver content from the authoring software to the affected product without authentication. |
| Path Traversal vulnerability in Sharp Display Solutions projectors allows a attacker may access and read any files within the projector. |
| An authenticated local user can obtain information that allows claiming security policy rules of another user due to sensitive information being accessible in the Windows Registry keys for Check Point Identity Agent running on a Terminal Server. |
| A security flaw has been discovered in Campcodes Complete Online Beauty Parlor Management System 1.0. Impacted is an unknown function of the file /admin/view-appointment.php. Performing manipulation of the argument viewid results in sql injection. The attack may be initiated remotely. The exploit has been released to the public and may be exploited. |
| Early versions of Operator-SDK provided an insecure method to allow operator containers to run in environments that used a random UID. Operator-SDK before 0.15.2 provided a script, user_setup, which modifies the permissions of the /etc/passwd file to 664 during build time. Developers who used Operator-SDK before 0.15.2 to scaffold their operator may still be impacted by this if the insecure user_setup script is still being used to build new container images.
In affected images, the /etc/passwd file is created during build time with group-writable permissions and a group ownership of root (gid=0). An attacker who can execute commands within an affected container, even as a non-root user, may be able to leverage their membership in the root group to modify the /etc/passwd file. This could allow the attacker to add a new user with any arbitrary UID, including UID 0, leading to full root privileges within the container. |
| The ELEX WordPress HelpDesk & Customer Ticketing System plugin for WordPress is vulnerable to Stored Cross-Site Scripting via ticket subjects in all versions up to, and including, 3.3.4 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |