| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: wlcore: ensure skb headroom before skb_push
This avoids occasional skb_under_panic Oops from wl1271_tx_work. In this case, headroom is
less than needed (typically 110 - 94 = 16 bytes). |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: mmp_pdma: Fix race condition in mmp_pdma_residue()
Add proper locking in mmp_pdma_residue() to prevent use-after-free when
accessing descriptor list and descriptor contents.
The race occurs when multiple threads call tx_status() while the tasklet
on another CPU is freeing completed descriptors:
CPU 0 CPU 1
----- -----
mmp_pdma_tx_status()
mmp_pdma_residue()
-> NO LOCK held
list_for_each_entry(sw, ..)
DMA interrupt
dma_do_tasklet()
-> spin_lock(&desc_lock)
list_move(sw->node, ...)
spin_unlock(&desc_lock)
| dma_pool_free(sw) <- FREED!
-> access sw->desc <- UAF!
This issue can be reproduced when running dmatest on the same channel with
multiple threads (threads_per_chan > 1).
Fix by protecting the chain_running list iteration and descriptor access
with the chan->desc_lock spinlock. |
| In the Linux kernel, the following vulnerability has been resolved:
smb/server: call ksmbd_session_rpc_close() on error path in create_smb2_pipe()
When ksmbd_iov_pin_rsp() fails, we should call ksmbd_session_rpc_close(). |
| In the Linux kernel, the following vulnerability has been resolved:
smb/server: fix refcount leak in parse_durable_handle_context()
When the command is a replay operation and -ENOEXEC is returned,
the refcount of ksmbd_file must be released. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: Sanitize syscall table indexing under speculation
The syscall number is a user-controlled value used to index into the
syscall table. Use array_index_nospec() to clamp this value after the
bounds check to prevent speculative out-of-bounds access and subsequent
data leakage via cache side channels. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: TC, delete flows only for existing peers
When deleting TC steering flows, iterate only over actual devcom
peers instead of assuming all possible ports exist. This avoids
touching non-existent peers and ensures cleanup is limited to
devices the driver is currently connected to.
BUG: kernel NULL pointer dereference, address: 0000000000000008
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 133c8a067 P4D 0
Oops: Oops: 0002 [#1] SMP
CPU: 19 UID: 0 PID: 2169 Comm: tc Not tainted 6.18.0+ #156 NONE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:mlx5e_tc_del_fdb_peers_flow+0xbe/0x200 [mlx5_core]
Code: 00 00 a8 08 74 a8 49 8b 46 18 f6 c4 02 74 9f 4c 8d bf a0 12 00 00 4c 89 ff e8 0e e7 96 e1 49 8b 44 24 08 49 8b 0c 24 4c 89 ff <48> 89 41 08 48 89 08 49 89 2c 24 49 89 5c 24 08 e8 7d ce 96 e1 49
RSP: 0018:ff11000143867528 EFLAGS: 00010246
RAX: 0000000000000000 RBX: dead000000000122 RCX: 0000000000000000
RDX: ff11000143691580 RSI: ff110001026e5000 RDI: ff11000106f3d2a0
RBP: dead000000000100 R08: 00000000000003fd R09: 0000000000000002
R10: ff11000101c75690 R11: ff1100085faea178 R12: ff11000115f0ae78
R13: 0000000000000000 R14: ff11000115f0a800 R15: ff11000106f3d2a0
FS: 00007f35236bf740(0000) GS:ff110008dc809000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000008 CR3: 0000000157a01001 CR4: 0000000000373eb0
Call Trace:
<TASK>
mlx5e_tc_del_flow+0x46/0x270 [mlx5_core]
mlx5e_flow_put+0x25/0x50 [mlx5_core]
mlx5e_delete_flower+0x2a6/0x3e0 [mlx5_core]
tc_setup_cb_reoffload+0x20/0x80
fl_reoffload+0x26f/0x2f0 [cls_flower]
? mlx5e_tc_reoffload_flows_work+0xc0/0xc0 [mlx5_core]
? mlx5e_tc_reoffload_flows_work+0xc0/0xc0 [mlx5_core]
tcf_block_playback_offloads+0x9e/0x1c0
tcf_block_unbind+0x7b/0xd0
tcf_block_setup+0x186/0x1d0
tcf_block_offload_cmd.isra.0+0xef/0x130
tcf_block_offload_unbind+0x43/0x70
__tcf_block_put+0x85/0x160
ingress_destroy+0x32/0x110 [sch_ingress]
__qdisc_destroy+0x44/0x100
qdisc_graft+0x22b/0x610
tc_get_qdisc+0x183/0x4d0
rtnetlink_rcv_msg+0x2d7/0x3d0
? rtnl_calcit.isra.0+0x100/0x100
netlink_rcv_skb+0x53/0x100
netlink_unicast+0x249/0x320
? __alloc_skb+0x102/0x1f0
netlink_sendmsg+0x1e3/0x420
__sock_sendmsg+0x38/0x60
____sys_sendmsg+0x1ef/0x230
? copy_msghdr_from_user+0x6c/0xa0
___sys_sendmsg+0x7f/0xc0
? ___sys_recvmsg+0x8a/0xc0
? __sys_sendto+0x119/0x180
__sys_sendmsg+0x61/0xb0
do_syscall_64+0x55/0x640
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7f35238bb764
Code: 15 b9 86 0c 00 f7 d8 64 89 02 b8 ff ff ff ff eb bf 0f 1f 44 00 00 f3 0f 1e fa 80 3d e5 08 0d 00 00 74 13 b8 2e 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 4c c3 0f 1f 00 55 48 89 e5 48 83 ec 20 89 55
RSP: 002b:00007ffed4c35638 EFLAGS: 00000202 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 000055a2efcc75e0 RCX: 00007f35238bb764
RDX: 0000000000000000 RSI: 00007ffed4c356a0 RDI: 0000000000000003
RBP: 00007ffed4c35710 R08: 0000000000000010 R09: 00007f3523984b20
R10: 0000000000000004 R11: 0000000000000202 R12: 00007ffed4c35790
R13: 000000006947df8f R14: 000055a2efcc75e0 R15: 00007ffed4c35780 |
| In the Linux kernel, the following vulnerability has been resolved:
net: wwan: t7xx: fix potential skb->frags overflow in RX path
When receiving data in the DPMAIF RX path,
the t7xx_dpmaif_set_frag_to_skb() function adds
page fragments to an skb without checking if the number of
fragments has exceeded MAX_SKB_FRAGS. This could lead to a buffer overflow
in skb_shinfo(skb)->frags[] array, corrupting adjacent memory and
potentially causing kernel crashes or other undefined behavior.
This issue was identified through static code analysis by comparing with a
similar vulnerability fixed in the mt76 driver commit b102f0c522cf ("mt76:
fix array overflow on receiving too many fragments for a packet").
The vulnerability could be triggered if the modem firmware sends packets
with excessive fragments. While under normal protocol conditions (MTU 3080
bytes, BAT buffer 3584 bytes),
a single packet should not require additional
fragments, the kernel should not blindly trust firmware behavior.
Malicious, buggy, or compromised firmware could potentially craft packets
with more fragments than the kernel expects.
Fix this by adding a bounds check before calling skb_add_rx_frag() to
ensure nr_frags does not exceed MAX_SKB_FRAGS.
The check must be performed before unmapping to avoid a page leak
and double DMA unmap during device teardown. |
| In the Linux kernel, the following vulnerability has been resolved:
bonding: fix use-after-free due to enslave fail after slave array update
Fix a use-after-free which happens due to enslave failure after the new
slave has been added to the array. Since the new slave can be used for Tx
immediately, we can use it after it has been freed by the enslave error
cleanup path which frees the allocated slave memory. Slave update array is
supposed to be called last when further enslave failures are not expected.
Move it after xdp setup to avoid any problems.
It is very easy to reproduce the problem with a simple xdp_pass prog:
ip l add bond1 type bond mode balance-xor
ip l set bond1 up
ip l set dev bond1 xdp object xdp_pass.o sec xdp_pass
ip l add dumdum type dummy
Then run in parallel:
while :; do ip l set dumdum master bond1 1>/dev/null 2>&1; done;
mausezahn bond1 -a own -b rand -A rand -B 1.1.1.1 -c 0 -t tcp "dp=1-1023, flags=syn"
The crash happens almost immediately:
[ 605.602850] Oops: general protection fault, probably for non-canonical address 0xe0e6fc2460000137: 0000 [#1] SMP KASAN NOPTI
[ 605.602916] KASAN: maybe wild-memory-access in range [0x07380123000009b8-0x07380123000009bf]
[ 605.602946] CPU: 0 UID: 0 PID: 2445 Comm: mausezahn Kdump: loaded Tainted: G B 6.19.0-rc6+ #21 PREEMPT(voluntary)
[ 605.602979] Tainted: [B]=BAD_PAGE
[ 605.602998] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 605.603032] RIP: 0010:netdev_core_pick_tx+0xcd/0x210
[ 605.603063] Code: 48 89 fa 48 c1 ea 03 80 3c 02 00 0f 85 3e 01 00 00 48 b8 00 00 00 00 00 fc ff df 4c 8b 6b 08 49 8d 7d 30 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 25 01 00 00 49 8b 45 30 4c 89 e2 48 89 ee 48 89
[ 605.603111] RSP: 0018:ffff88817b9af348 EFLAGS: 00010213
[ 605.603145] RAX: dffffc0000000000 RBX: ffff88817d28b420 RCX: 0000000000000000
[ 605.603172] RDX: 00e7002460000137 RSI: 0000000000000008 RDI: 07380123000009be
[ 605.603199] RBP: ffff88817b541a00 R08: 0000000000000001 R09: fffffbfff3ed8c0c
[ 605.603226] R10: ffffffff9f6c6067 R11: 0000000000000001 R12: 0000000000000000
[ 605.603253] R13: 073801230000098e R14: ffff88817d28b448 R15: ffff88817b541a84
[ 605.603286] FS: 00007f6570ef67c0(0000) GS:ffff888221dfa000(0000) knlGS:0000000000000000
[ 605.603319] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 605.603343] CR2: 00007f65712fae40 CR3: 000000011371b000 CR4: 0000000000350ef0
[ 605.603373] Call Trace:
[ 605.603392] <TASK>
[ 605.603410] __dev_queue_xmit+0x448/0x32a0
[ 605.603434] ? __pfx_vprintk_emit+0x10/0x10
[ 605.603461] ? __pfx_vprintk_emit+0x10/0x10
[ 605.603484] ? __pfx___dev_queue_xmit+0x10/0x10
[ 605.603507] ? bond_start_xmit+0xbfb/0xc20 [bonding]
[ 605.603546] ? _printk+0xcb/0x100
[ 605.603566] ? __pfx__printk+0x10/0x10
[ 605.603589] ? bond_start_xmit+0xbfb/0xc20 [bonding]
[ 605.603627] ? add_taint+0x5e/0x70
[ 605.603648] ? add_taint+0x2a/0x70
[ 605.603670] ? end_report.cold+0x51/0x75
[ 605.603693] ? bond_start_xmit+0xbfb/0xc20 [bonding]
[ 605.603731] bond_start_xmit+0x623/0xc20 [bonding] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/imx/tve: fix probe device leak
Make sure to drop the reference taken to the DDC device during probe on
probe failure (e.g. probe deferral) and on driver unbind. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix race in mptcp_pm_nl_flush_addrs_doit()
syzbot and Eulgyu Kim reported crashes in mptcp_pm_nl_get_local_id()
and/or mptcp_pm_nl_is_backup()
Root cause is list_splice_init() in mptcp_pm_nl_flush_addrs_doit()
which is not RCU ready.
list_splice_init_rcu() can not be called here while holding pernet->lock
spinlock.
Many thanks to Eulgyu Kim for providing a repro and testing our patches. |
| In the Linux kernel, the following vulnerability has been resolved:
flex_proportions: make fprop_new_period() hardirq safe
Bernd has reported a lockdep splat from flexible proportions code that is
essentially complaining about the following race:
<timer fires>
run_timer_softirq - we are in softirq context
call_timer_fn
writeout_period
fprop_new_period
write_seqcount_begin(&p->sequence);
<hardirq is raised>
...
blk_mq_end_request()
blk_update_request()
ext4_end_bio()
folio_end_writeback()
__wb_writeout_add()
__fprop_add_percpu_max()
if (unlikely(max_frac < FPROP_FRAC_BASE)) {
fprop_fraction_percpu()
seq = read_seqcount_begin(&p->sequence);
- sees odd sequence so loops indefinitely
Note that a deadlock like this is only possible if the bdi has configured
maximum fraction of writeout throughput which is very rare in general but
frequent for example for FUSE bdis. To fix this problem we have to make
sure write section of the sequence counter is irqsafe. |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: nci: Fix race between rfkill and nci_unregister_device().
syzbot reported the splat below [0] without a repro.
It indicates that struct nci_dev.cmd_wq had been destroyed before
nci_close_device() was called via rfkill.
nci_dev.cmd_wq is only destroyed in nci_unregister_device(), which
(I think) was called from virtual_ncidev_close() when syzbot close()d
an fd of virtual_ncidev.
The problem is that nci_unregister_device() destroys nci_dev.cmd_wq
first and then calls nfc_unregister_device(), which removes the
device from rfkill by rfkill_unregister().
So, the device is still visible via rfkill even after nci_dev.cmd_wq
is destroyed.
Let's unregister the device from rfkill first in nci_unregister_device().
Note that we cannot call nfc_unregister_device() before
nci_close_device() because
1) nfc_unregister_device() calls device_del() which frees
all memory allocated by devm_kzalloc() and linked to
ndev->conn_info_list
2) nci_rx_work() could try to queue nci_conn_info to
ndev->conn_info_list which could be leaked
Thus, nfc_unregister_device() is split into two functions so we
can remove rfkill interfaces only before nci_close_device().
[0]:
DEBUG_LOCKS_WARN_ON(1)
WARNING: kernel/locking/lockdep.c:238 at hlock_class kernel/locking/lockdep.c:238 [inline], CPU#0: syz.0.8675/6349
WARNING: kernel/locking/lockdep.c:238 at check_wait_context kernel/locking/lockdep.c:4854 [inline], CPU#0: syz.0.8675/6349
WARNING: kernel/locking/lockdep.c:238 at __lock_acquire+0x39d/0x2cf0 kernel/locking/lockdep.c:5187, CPU#0: syz.0.8675/6349
Modules linked in:
CPU: 0 UID: 0 PID: 6349 Comm: syz.0.8675 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/13/2026
RIP: 0010:hlock_class kernel/locking/lockdep.c:238 [inline]
RIP: 0010:check_wait_context kernel/locking/lockdep.c:4854 [inline]
RIP: 0010:__lock_acquire+0x3a4/0x2cf0 kernel/locking/lockdep.c:5187
Code: 18 00 4c 8b 74 24 08 75 27 90 e8 17 f2 fc 02 85 c0 74 1c 83 3d 50 e0 4e 0e 00 75 13 48 8d 3d 43 f7 51 0e 48 c7 c6 8b 3a de 8d <67> 48 0f b9 3a 90 31 c0 0f b6 98 c4 00 00 00 41 8b 45 20 25 ff 1f
RSP: 0018:ffffc9000c767680 EFLAGS: 00010046
RAX: 0000000000000001 RBX: 0000000000040000 RCX: 0000000000080000
RDX: ffffc90013080000 RSI: ffffffff8dde3a8b RDI: ffffffff8ff24ca0
RBP: 0000000000000003 R08: ffffffff8fef35a3 R09: 1ffffffff1fde6b4
R10: dffffc0000000000 R11: fffffbfff1fde6b5 R12: 00000000000012a2
R13: ffff888030338ba8 R14: ffff888030338000 R15: ffff888030338b30
FS: 00007fa5995f66c0(0000) GS:ffff8881256f8000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f7e72f842d0 CR3: 00000000485a0000 CR4: 00000000003526f0
Call Trace:
<TASK>
lock_acquire+0x106/0x330 kernel/locking/lockdep.c:5868
touch_wq_lockdep_map+0xcb/0x180 kernel/workqueue.c:3940
__flush_workqueue+0x14b/0x14f0 kernel/workqueue.c:3982
nci_close_device+0x302/0x630 net/nfc/nci/core.c:567
nci_dev_down+0x3b/0x50 net/nfc/nci/core.c:639
nfc_dev_down+0x152/0x290 net/nfc/core.c:161
nfc_rfkill_set_block+0x2d/0x100 net/nfc/core.c:179
rfkill_set_block+0x1d2/0x440 net/rfkill/core.c:346
rfkill_fop_write+0x461/0x5a0 net/rfkill/core.c:1301
vfs_write+0x29a/0xb90 fs/read_write.c:684
ksys_write+0x150/0x270 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xe2/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fa59b39acb9
Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 e8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fa5995f6028 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 00007fa59b615fa0 RCX: 00007fa59b39acb9
RDX: 0000000000000008 RSI: 0000200000000080 RDI: 0000000000000007
RBP: 00007fa59b408bf7 R08:
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ice: Fix NULL pointer dereference in ice_vsi_set_napi_queues
Add NULL pointer checks in ice_vsi_set_napi_queues() to prevent crashes
during resume from suspend when rings[q_idx]->q_vector is NULL.
Tested adaptor:
60:00.0 Ethernet controller [0200]: Intel Corporation Ethernet Controller E810-XXV for SFP [8086:159b] (rev 02)
Subsystem: Intel Corporation Ethernet Network Adapter E810-XXV-2 [8086:4003]
SR-IOV state: both disabled and enabled can reproduce this issue.
kernel version: v6.18
Reproduce steps:
Boot up and execute suspend like systemctl suspend or rtcwake.
Log:
<1>[ 231.443607] BUG: kernel NULL pointer dereference, address: 0000000000000040
<1>[ 231.444052] #PF: supervisor read access in kernel mode
<1>[ 231.444484] #PF: error_code(0x0000) - not-present page
<6>[ 231.444913] PGD 0 P4D 0
<4>[ 231.445342] Oops: Oops: 0000 [#1] SMP NOPTI
<4>[ 231.446635] RIP: 0010:netif_queue_set_napi+0xa/0x170
<4>[ 231.447067] Code: 31 f6 31 ff c3 cc cc cc cc 0f 1f 80 00 00 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f 1f 44 00 00 48 85 c9 74 0b <48> 83 79 30 00 0f 84 39 01 00 00 55 41 89 d1 49 89 f8 89 f2 48 89
<4>[ 231.447513] RSP: 0018:ffffcc780fc078c0 EFLAGS: 00010202
<4>[ 231.447961] RAX: ffff8b848ca30400 RBX: ffff8b848caf2028 RCX: 0000000000000010
<4>[ 231.448443] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff8b848dbd4000
<4>[ 231.448896] RBP: ffffcc780fc078e8 R08: 0000000000000000 R09: 0000000000000000
<4>[ 231.449345] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000001
<4>[ 231.449817] R13: ffff8b848dbd4000 R14: ffff8b84833390c8 R15: 0000000000000000
<4>[ 231.450265] FS: 00007c7b29e9d740(0000) GS:ffff8b8c068e2000(0000) knlGS:0000000000000000
<4>[ 231.450715] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
<4>[ 231.451179] CR2: 0000000000000040 CR3: 000000030626f004 CR4: 0000000000f72ef0
<4>[ 231.451629] PKRU: 55555554
<4>[ 231.452076] Call Trace:
<4>[ 231.452549] <TASK>
<4>[ 231.452996] ? ice_vsi_set_napi_queues+0x4d/0x110 [ice]
<4>[ 231.453482] ice_resume+0xfd/0x220 [ice]
<4>[ 231.453977] ? __pfx_pci_pm_resume+0x10/0x10
<4>[ 231.454425] pci_pm_resume+0x8c/0x140
<4>[ 231.454872] ? __pfx_pci_pm_resume+0x10/0x10
<4>[ 231.455347] dpm_run_callback+0x5f/0x160
<4>[ 231.455796] ? dpm_wait_for_superior+0x107/0x170
<4>[ 231.456244] device_resume+0x177/0x270
<4>[ 231.456708] dpm_resume+0x209/0x2f0
<4>[ 231.457151] dpm_resume_end+0x15/0x30
<4>[ 231.457596] suspend_devices_and_enter+0x1da/0x2b0
<4>[ 231.458054] enter_state+0x10e/0x570
Add defensive checks for both the ring pointer and its q_vector
before dereferencing, allowing the system to resume successfully even when
q_vectors are unmapped. |
| In the Linux kernel, the following vulnerability has been resolved:
sfc: fix deadlock in RSS config read
Since cited commit, core locks the net_device's rss_lock when handling
ethtool -x command, so driver's implementation should not lock it
again. Remove the latter. |
| In the Linux kernel, the following vulnerability has been resolved:
rocker: fix memory leak in rocker_world_port_post_fini()
In rocker_world_port_pre_init(), rocker_port->wpriv is allocated with
kzalloc(wops->port_priv_size, GFP_KERNEL). However, in
rocker_world_port_post_fini(), the memory is only freed when
wops->port_post_fini callback is set:
if (!wops->port_post_fini)
return;
wops->port_post_fini(rocker_port);
kfree(rocker_port->wpriv);
Since rocker_ofdpa_ops does not implement port_post_fini callback
(it is NULL), the wpriv memory allocated for each port is never freed
when ports are removed. This leads to a memory leak of
sizeof(struct ofdpa_port) bytes per port on every device removal.
Fix this by always calling kfree(rocker_port->wpriv) regardless of
whether the port_post_fini callback exists. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix NULL pointer dereference in amdgpu_gmc_filter_faults_remove
On APUs such as Raven and Renoir (GC 9.1.0, 9.2.2, 9.3.0), the ih1 and
ih2 interrupt ring buffers are not initialized. This is by design, as
these secondary IH rings are only available on discrete GPUs. See
vega10_ih_sw_init() which explicitly skips ih1/ih2 initialization when
AMD_IS_APU is set.
However, amdgpu_gmc_filter_faults_remove() unconditionally uses ih1 to
get the timestamp of the last interrupt entry. When retry faults are
enabled on APUs (noretry=0), this function is called from the SVM page
fault recovery path, resulting in a NULL pointer dereference when
amdgpu_ih_decode_iv_ts_helper() attempts to access ih->ring[].
The crash manifests as:
BUG: kernel NULL pointer dereference, address: 0000000000000004
RIP: 0010:amdgpu_ih_decode_iv_ts_helper+0x22/0x40 [amdgpu]
Call Trace:
amdgpu_gmc_filter_faults_remove+0x60/0x130 [amdgpu]
svm_range_restore_pages+0xae5/0x11c0 [amdgpu]
amdgpu_vm_handle_fault+0xc8/0x340 [amdgpu]
gmc_v9_0_process_interrupt+0x191/0x220 [amdgpu]
amdgpu_irq_dispatch+0xed/0x2c0 [amdgpu]
amdgpu_ih_process+0x84/0x100 [amdgpu]
This issue was exposed by commit 1446226d32a4 ("drm/amdgpu: Remove GC HW
IP 9.3.0 from noretry=1") which changed the default for Renoir APU from
noretry=1 to noretry=0, enabling retry fault handling and thus
exercising the buggy code path.
Fix this by adding a check for ih1.ring_size before attempting to use
it. Also restore the soft_ih support from commit dd299441654f ("drm/amdgpu:
Rework retry fault removal"). This is needed if the hardware doesn't
support secondary HW IH rings.
v2: additional updates (Alex)
(cherry picked from commit 6ce8d536c80aa1f059e82184f0d1994436b1d526) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/nvm: Fix double-free on aux add failure
After a successful auxiliary_device_init(), aux_dev->dev.release
(xe_nvm_release_dev()) is responsible for the kfree(nvm). When
there is failure with auxiliary_device_add(), driver will call
auxiliary_device_uninit(), which call put_device(). So that the
.release callback will be triggered to free the memory associated
with the auxiliary_device.
Move the kfree(nvm) into the auxiliary_device_init() failure path
and remove the err goto path to fix below error.
"
[ 13.232905] ==================================================================
[ 13.232911] BUG: KASAN: double-free in xe_nvm_init+0x751/0xf10 [xe]
[ 13.233112] Free of addr ffff888120635000 by task systemd-udevd/273
[ 13.233120] CPU: 8 UID: 0 PID: 273 Comm: systemd-udevd Not tainted 6.19.0-rc2-lgci-xe-kernel+ #225 PREEMPT(voluntary)
...
[ 13.233125] Call Trace:
[ 13.233126] <TASK>
[ 13.233127] dump_stack_lvl+0x7f/0xc0
[ 13.233132] print_report+0xce/0x610
[ 13.233136] ? kasan_complete_mode_report_info+0x5d/0x1e0
[ 13.233139] ? xe_nvm_init+0x751/0xf10 [xe]
...
"
v2: drop err goto path. (Alexander)
(cherry picked from commit a3187c0c2bbd947ffff97f90d077ac88f9c2a215) |
| In the Linux kernel, the following vulnerability has been resolved:
mm/shmem, swap: fix race of truncate and swap entry split
The helper for shmem swap freeing is not handling the order of swap
entries correctly. It uses xa_cmpxchg_irq to erase the swap entry, but it
gets the entry order before that using xa_get_order without lock
protection, and it may get an outdated order value if the entry is split
or changed in other ways after the xa_get_order and before the
xa_cmpxchg_irq.
And besides, the order could grow and be larger than expected, and cause
truncation to erase data beyond the end border. For example, if the
target entry and following entries are swapped in or freed, then a large
folio was added in place and swapped out, using the same entry, the
xa_cmpxchg_irq will still succeed, it's very unlikely to happen though.
To fix that, open code the Xarray cmpxchg and put the order retrieval and
value checking in the same critical section. Also, ensure the order won't
exceed the end border, skip it if the entry goes across the border.
Skipping large swap entries crosses the end border is safe here. Shmem
truncate iterates the range twice, in the first iteration,
find_lock_entries already filtered such entries, and shmem will swapin the
entries that cross the end border and partially truncate the folio (split
the folio or at least zero part of it). So in the second loop here, if we
see a swap entry that crosses the end order, it must at least have its
content erased already.
I observed random swapoff hangs and kernel panics when stress testing
ZSWAP with shmem. After applying this patch, all problems are gone. |
| In the Linux kernel, the following vulnerability has been resolved:
octeon_ep: Fix memory leak in octep_device_setup()
In octep_device_setup(), if octep_ctrl_net_init() fails, the function
returns directly without unmapping the mapped resources and freeing the
allocated configuration memory.
Fix this by jumping to the unsupported_dev label, which performs the
necessary cleanup. This aligns with the error handling logic of other
paths in this function.
Compile tested only. Issue found using a prototype static analysis tool
and code review. |
| In the Linux kernel, the following vulnerability has been resolved:
perf: sched: Fix perf crash with new is_user_task() helper
In order to do a user space stacktrace the current task needs to be a user
task that has executed in user space. It use to be possible to test if a
task is a user task or not by simply checking the task_struct mm field. If
it was non NULL, it was a user task and if not it was a kernel task.
But things have changed over time, and some kernel tasks now have their
own mm field.
An idea was made to instead test PF_KTHREAD and two functions were used to
wrap this check in case it became more complex to test if a task was a
user task or not[1]. But this was rejected and the C code simply checked
the PF_KTHREAD directly.
It was later found that not all kernel threads set PF_KTHREAD. The io-uring
helpers instead set PF_USER_WORKER and this needed to be added as well.
But checking the flags is still not enough. There's a very small window
when a task exits that it frees its mm field and it is set back to NULL.
If perf were to trigger at this moment, the flags test would say its a
user space task but when perf would read the mm field it would crash with
at NULL pointer dereference.
Now there are flags that can be used to test if a task is exiting, but
they are set in areas that perf may still want to profile the user space
task (to see where it exited). The only real test is to check both the
flags and the mm field.
Instead of making this modification in every location, create a new
is_user_task() helper function that does all the tests needed to know if
it is safe to read the user space memory or not.
[1] https://lore.kernel.org/all/20250425204120.639530125@goodmis.org/ |