| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The Ninja Forms WordPress plugin before 3.13.3 allows unauthenticated attackers to generate valid access tokens via the REST API which can then be used to read form submissions. |
| A flaw was found in GNU Wget2. This vulnerability, a stack-based buffer overflow, occurs in the filename sanitization logic when processing attacker-controlled URL paths, particularly when filename restriction options are active. A remote attacker can exploit this by providing a specially crafted URL, which, upon user interaction with wget2, can lead to memory corruption. This can cause the application to crash and potentially allow for further malicious activities. |
| A security issue was discovered in GNU Wget2 when handling Metalink documents. The application fails to properly validate file paths provided in Metalink <file name> elements. An attacker can abuse this behavior to write files to unintended locations on the system. This can lead to data loss or potentially allow further compromise of the user’s environment. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix KMSAN uninit-value in extent_info usage
KMSAN reported a use of uninitialized value in `__is_extent_mergeable()`
and `__is_back_mergeable()` via the read extent tree path.
The root cause is that `get_read_extent_info()` only initializes three
fields (`fofs`, `blk`, `len`) of `struct extent_info`, leaving the
remaining fields uninitialized. This leads to undefined behavior
when those fields are accessed later, especially during
extent merging.
Fix it by zero-initializing the `extent_info` struct before population. |
| Frappe is a full-stack web application framework. Versions 14.99.5 and below and 15.0.0 through 15.80.1 include requests that are vulnerable to path traversal attacks. Arbitrary files from the server could be retrieved due to a lack of proper sanitization on some requests. This issue is fixed in versions 14.99.6 and 15.88.1. To workaround, changing the setup to use a reverse proxy is recommended. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: ccp - Fix crash when rebind ccp device for ccp.ko
When CONFIG_CRYPTO_DEV_CCP_DEBUGFS is enabled, rebinding
the ccp device causes the following crash:
$ echo '0000:0a:00.2' > /sys/bus/pci/drivers/ccp/unbind
$ echo '0000:0a:00.2' > /sys/bus/pci/drivers/ccp/bind
[ 204.976930] BUG: kernel NULL pointer dereference, address: 0000000000000098
[ 204.978026] #PF: supervisor write access in kernel mode
[ 204.979126] #PF: error_code(0x0002) - not-present page
[ 204.980226] PGD 0 P4D 0
[ 204.981317] Oops: Oops: 0002 [#1] SMP NOPTI
...
[ 204.997852] Call Trace:
[ 204.999074] <TASK>
[ 205.000297] start_creating+0x9f/0x1c0
[ 205.001533] debugfs_create_dir+0x1f/0x170
[ 205.002769] ? srso_return_thunk+0x5/0x5f
[ 205.004000] ccp5_debugfs_setup+0x87/0x170 [ccp]
[ 205.005241] ccp5_init+0x8b2/0x960 [ccp]
[ 205.006469] ccp_dev_init+0xd4/0x150 [ccp]
[ 205.007709] sp_init+0x5f/0x80 [ccp]
[ 205.008942] sp_pci_probe+0x283/0x2e0 [ccp]
[ 205.010165] ? srso_return_thunk+0x5/0x5f
[ 205.011376] local_pci_probe+0x4f/0xb0
[ 205.012584] pci_device_probe+0xdb/0x230
[ 205.013810] really_probe+0xed/0x380
[ 205.015024] __driver_probe_device+0x7e/0x160
[ 205.016240] device_driver_attach+0x2f/0x60
[ 205.017457] bind_store+0x7c/0xb0
[ 205.018663] drv_attr_store+0x28/0x40
[ 205.019868] sysfs_kf_write+0x5f/0x70
[ 205.021065] kernfs_fop_write_iter+0x145/0x1d0
[ 205.022267] vfs_write+0x308/0x440
[ 205.023453] ksys_write+0x6d/0xe0
[ 205.024616] __x64_sys_write+0x1e/0x30
[ 205.025778] x64_sys_call+0x16ba/0x2150
[ 205.026942] do_syscall_64+0x56/0x1e0
[ 205.028108] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 205.029276] RIP: 0033:0x7fbc36f10104
[ 205.030420] Code: 89 02 48 c7 c0 ff ff ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 8d 05 e1 08 2e 00 8b 00 85 c0 75 13 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 f3 c3 66 90 41 54 55 49 89 d4 53 48 89 f5
This patch sets ccp_debugfs_dir to NULL after destroying it in
ccp5_debugfs_destroy, allowing the directory dentry to be
recreated when rebinding the ccp device.
Tested on AMD Ryzen 7 1700X. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: xilinx: vcu: unregister pll_post only if registered correctly
If registration of pll_post is failed, it will be set to NULL or ERR,
unregistering same will fail with following call trace:
Unable to handle kernel NULL pointer dereference at virtual address 008
pc : clk_hw_unregister+0xc/0x20
lr : clk_hw_unregister_fixed_factor+0x18/0x30
sp : ffff800011923850
...
Call trace:
clk_hw_unregister+0xc/0x20
clk_hw_unregister_fixed_factor+0x18/0x30
xvcu_unregister_clock_provider+0xcc/0xf4 [xlnx_vcu]
xvcu_probe+0x2bc/0x53c [xlnx_vcu] |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: reject malicious packets in ipv6_gso_segment()
syzbot was able to craft a packet with very long IPv6 extension headers
leading to an overflow of skb->transport_header.
This 16bit field has a limited range.
Add skb_reset_transport_header_careful() helper and use it
from ipv6_gso_segment()
WARNING: CPU: 0 PID: 5871 at ./include/linux/skbuff.h:3032 skb_reset_transport_header include/linux/skbuff.h:3032 [inline]
WARNING: CPU: 0 PID: 5871 at ./include/linux/skbuff.h:3032 ipv6_gso_segment+0x15e2/0x21e0 net/ipv6/ip6_offload.c:151
Modules linked in:
CPU: 0 UID: 0 PID: 5871 Comm: syz-executor211 Not tainted 6.16.0-rc6-syzkaller-g7abc678e3084 #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/12/2025
RIP: 0010:skb_reset_transport_header include/linux/skbuff.h:3032 [inline]
RIP: 0010:ipv6_gso_segment+0x15e2/0x21e0 net/ipv6/ip6_offload.c:151
Call Trace:
<TASK>
skb_mac_gso_segment+0x31c/0x640 net/core/gso.c:53
nsh_gso_segment+0x54a/0xe10 net/nsh/nsh.c:110
skb_mac_gso_segment+0x31c/0x640 net/core/gso.c:53
__skb_gso_segment+0x342/0x510 net/core/gso.c:124
skb_gso_segment include/net/gso.h:83 [inline]
validate_xmit_skb+0x857/0x11b0 net/core/dev.c:3950
validate_xmit_skb_list+0x84/0x120 net/core/dev.c:4000
sch_direct_xmit+0xd3/0x4b0 net/sched/sch_generic.c:329
__dev_xmit_skb net/core/dev.c:4102 [inline]
__dev_queue_xmit+0x17b6/0x3a70 net/core/dev.c:4679 |
| Sametime Connect desktop chat client includes, but does not use or require, the use of an Eclipse feature called Secure Storage. Using this Eclipse feature to store sensitive data can lead to exposure of that data.
|
| Use After Free in PROCA driver prior to SMR Jan-2026 Release 1 allows local attackers to potentially execute arbitrary code. |
| An issue was discovered in the Camera in Samsung Mobile Processor and Wearable Processor Exynos 1330, 1380, 1480, 2400, 1580, 2500. A race condition in the issimian device driver results in an out-of-bounds access, leading to a denial of service. |
| An issue was discovered in the Camera in Samsung Mobile Processor and Wearable Processor Exynos 1330, 1380, 1480, 2400, 1580, 2500. An invalid kernel address dereference in the issimian device driver leads to a denial of service. |
| In 2N Access Commander versions 3.1.1.2 and prior, a Path Traversal vulnerability could allow an attacker with administrative privileges to write files on the filesystem and potentially achieve arbitrary remote code execution. This vulnerability cannot be exploited by users with lower privilege roles. |
| An issue was discovered in the Camera in Samsung Mobile Processor and Wearable Processor Exynos 1330, 1380, 1480, 2400, 1580, 2500. A race condition in the issimian device driver results in a double free, leading to a denial of service. |
| 2N Access Commander version 2.1 and prior is vulnerable in default settings to Man In The Middle attack due to not verifying certificates of 2N edge devices.
2N has currently released an updated version 3.3 of 2N Access Commander, with added Certificate Fingerprint Verification. Since version 2.2 of 2N Access Commander (released in February 2022) it is also possible to enforce TLS certificate validation.It is recommended that all customers update 2N Access Commander to the latest version and use one of two mentioned practices. |
| In 2N Access Commander versions 3.1.1.2 and prior, a local attacker can escalate their privileges in the system which could allow for arbitrary
code execution with root permissions. |
| Successful exploitation of this vulnerability could allow an attacker (who needs to have Admin access privileges) to read hardcoded AES passphrase, which may be used for decryption of certain data within backup files of 2N Access Commander version 1.14 and older.
2N has released an updated version 3.3 of 2N Access Commander, where this vulnerability is mitigated. It is recommended that all customers update 2N Access Commander to the latest version. |
| In 2N Access Commander versions 3.1.1.2 and prior, an Insufficient
Verification of Data Authenticity vulnerability could allow an attacker
to escalate their privileges and gain root access to the system. |
| Using API in the 2N OS device, authorized user can enable logging, which discloses valid authentication tokens in system log.
2N has released an updated version 2.46 of 2N OS, where this vulnerability is mitigated. It is recommended that all customers update their devices to the latest 2N OS. |
| Specifically crafted payloads sent to the RFID reader could cause DoS of RFID reader. After the device is restarted, it gets back to fully working state.
2N has released an updated version 2.46 of 2N OS, where this vulnerability is mitigated. It is recommended that all customers update their devices to the latest 2N OS. |