| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86/amd: pmf: Use device managed allocations
If setting up smart PC fails for any reason then this can lead to
a double free when unloading amd-pmf. This is because dev->buf was
freed but never set to NULL and is again freed in amd_pmf_remove().
To avoid subtle allocation bugs in failures leading to a double free
change all allocations into device managed allocations. |
| In the Linux kernel, the following vulnerability has been resolved:
netfs: Fix double put of request
If a netfs request finishes during the pause loop, it will have the ref
that belongs to the IN_PROGRESS flag removed at that point - however, if it
then goes to the final wait loop, that will *also* put the ref because it
sees that the IN_PROGRESS flag is clear and incorrectly assumes that this
happened when it called the collector.
In fact, since IN_PROGRESS is clear, we shouldn't call the collector again
since it's done all the cleanup, such as calling ->ki_complete().
Fix this by making netfs_collect_in_app() just return, indicating that
we're done if IN_PROGRESS is removed. |
| In the Linux kernel, the following vulnerability has been resolved:
net: libwx: remove duplicate page_pool_put_full_page()
page_pool_put_full_page() should only be invoked when freeing Rx buffers
or building a skb if the size is too short. At other times, the pages
need to be reused. So remove the redundant page put. In the original
code, double free pages cause kernel panic:
[ 876.949834] __irq_exit_rcu+0xc7/0x130
[ 876.949836] common_interrupt+0xb8/0xd0
[ 876.949838] </IRQ>
[ 876.949838] <TASK>
[ 876.949840] asm_common_interrupt+0x22/0x40
[ 876.949841] RIP: 0010:cpuidle_enter_state+0xc2/0x420
[ 876.949843] Code: 00 00 e8 d1 1d 5e ff e8 ac f0 ff ff 49 89 c5 0f 1f 44 00 00 31 ff e8 cd fc 5c ff 45 84 ff 0f 85 40 02 00 00 fb 0f 1f 44 00 00 <45> 85 f6 0f 88 84 01 00 00 49 63 d6 48 8d 04 52 48 8d 04 82 49 8d
[ 876.949844] RSP: 0018:ffffaa7340267e78 EFLAGS: 00000246
[ 876.949845] RAX: ffff9e3f135be000 RBX: 0000000000000002 RCX: 0000000000000000
[ 876.949846] RDX: 000000cc2dc4cb7c RSI: ffffffff89ee49ae RDI: ffffffff89ef9f9e
[ 876.949847] RBP: ffff9e378f940800 R08: 0000000000000002 R09: 00000000000000ed
[ 876.949848] R10: 000000000000afc8 R11: ffff9e3e9e5a9b6c R12: ffffffff8a6d8580
[ 876.949849] R13: 000000cc2dc4cb7c R14: 0000000000000002 R15: 0000000000000000
[ 876.949852] ? cpuidle_enter_state+0xb3/0x420
[ 876.949855] cpuidle_enter+0x29/0x40
[ 876.949857] cpuidle_idle_call+0xfd/0x170
[ 876.949859] do_idle+0x7a/0xc0
[ 876.949861] cpu_startup_entry+0x25/0x30
[ 876.949862] start_secondary+0x117/0x140
[ 876.949864] common_startup_64+0x13e/0x148
[ 876.949867] </TASK>
[ 876.949868] ---[ end trace 0000000000000000 ]---
[ 876.949869] ------------[ cut here ]------------
[ 876.949870] list_del corruption, ffffead40445a348->next is NULL
[ 876.949873] WARNING: CPU: 14 PID: 0 at lib/list_debug.c:52 __list_del_entry_valid_or_report+0x67/0x120
[ 876.949875] Modules linked in: snd_hrtimer(E) bnep(E) binfmt_misc(E) amdgpu(E) squashfs(E) vfat(E) loop(E) fat(E) amd_atl(E) snd_hda_codec_realtek(E) intel_rapl_msr(E) snd_hda_codec_generic(E) intel_rapl_common(E) snd_hda_scodec_component(E) snd_hda_codec_hdmi(E) snd_hda_intel(E) edac_mce_amd(E) snd_intel_dspcfg(E) snd_hda_codec(E) snd_hda_core(E) amdxcp(E) kvm_amd(E) snd_hwdep(E) gpu_sched(E) drm_panel_backlight_quirks(E) cec(E) snd_pcm(E) drm_buddy(E) snd_seq_dummy(E) drm_ttm_helper(E) btusb(E) kvm(E) snd_seq_oss(E) btrtl(E) ttm(E) btintel(E) snd_seq_midi(E) btbcm(E) drm_exec(E) snd_seq_midi_event(E) i2c_algo_bit(E) snd_rawmidi(E) bluetooth(E) drm_suballoc_helper(E) irqbypass(E) snd_seq(E) ghash_clmulni_intel(E) sha512_ssse3(E) drm_display_helper(E) aesni_intel(E) snd_seq_device(E) rfkill(E) snd_timer(E) gf128mul(E) drm_client_lib(E) drm_kms_helper(E) snd(E) i2c_piix4(E) joydev(E) soundcore(E) wmi_bmof(E) ccp(E) k10temp(E) i2c_smbus(E) gpio_amdpt(E) i2c_designware_platform(E) gpio_generic(E) sg(E)
[ 876.949914] i2c_designware_core(E) sch_fq_codel(E) parport_pc(E) drm(E) ppdev(E) lp(E) parport(E) fuse(E) nfnetlink(E) ip_tables(E) ext4 crc16 mbcache jbd2 sd_mod sfp mdio_i2c i2c_core txgbe ahci ngbe pcs_xpcs libahci libwx r8169 phylink libata realtek ptp pps_core video wmi
[ 876.949933] CPU: 14 UID: 0 PID: 0 Comm: swapper/14 Kdump: loaded Tainted: G W E 6.16.0-rc2+ #20 PREEMPT(voluntary)
[ 876.949935] Tainted: [W]=WARN, [E]=UNSIGNED_MODULE
[ 876.949936] Hardware name: Micro-Star International Co., Ltd. MS-7E16/X670E GAMING PLUS WIFI (MS-7E16), BIOS 1.90 12/31/2024
[ 876.949936] RIP: 0010:__list_del_entry_valid_or_report+0x67/0x120
[ 876.949938] Code: 00 00 00 48 39 7d 08 0f 85 a6 00 00 00 5b b8 01 00 00 00 5d 41 5c e9 73 0d 93 ff 48 89 fe 48 c7 c7 a0 31 e8 89 e8 59 7c b3 ff <0f> 0b 31 c0 5b 5d 41 5c e9 57 0d 93 ff 48 89 fe 48 c7 c7 c8 31 e8
[ 876.949940] RSP: 0018:ffffaa73405d0c60 EFLAGS: 00010282
[ 876.949941] RAX: 0000000000000000 RBX: ffffead40445a348 RCX: 0000000000000000
[ 876.949942] RDX: 0000000000000105 RSI: 00000
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: fix double list_add at iwl_mvm_mac_wake_tx_queue
After successfull station association, if station queues are disabled for
some reason, the related lists are not emptied. So if some new element is
added to the list in iwl_mvm_mac_wake_tx_queue, it can match with the old
one and produce a BUG like this:
[ 46.535263] list_add corruption. prev->next should be next (ffff94c1c318a360), but was 0000000000000000. (prev=ffff94c1d02d3388).
[ 46.535283] ------------[ cut here ]------------
[ 46.535284] kernel BUG at lib/list_debug.c:26!
[ 46.535290] invalid opcode: 0000 [#1] PREEMPT SMP PTI
[ 46.585304] CPU: 0 PID: 623 Comm: wpa_supplicant Not tainted 5.19.0-rc3+ #1
[ 46.592380] Hardware name: Dell Inc. Inspiron 660s/0478VN , BIOS A07 08/24/2012
[ 46.600336] RIP: 0010:__list_add_valid.cold+0x3d/0x3f
[ 46.605475] Code: f2 4c 89 c1 48 89 fe 48 c7 c7 c8 40 67 93 e8 20 cc fd ff 0f 0b 48 89 d1 4c 89 c6 4c 89 ca 48 c7 c7 70 40 67 93 e8 09 cc fd ff <0f> 0b 48 89 fe 48 c7 c7 00 41 67 93 e8 f8 cb fd ff 0f 0b 48 89 d1
[ 46.624469] RSP: 0018:ffffb20800ab76d8 EFLAGS: 00010286
[ 46.629854] RAX: 0000000000000075 RBX: ffff94c1c318a0e0 RCX: 0000000000000000
[ 46.637105] RDX: 0000000000000201 RSI: ffffffff9365e100 RDI: 00000000ffffffff
[ 46.644356] RBP: ffff94c1c5f43370 R08: 0000000000000075 R09: 3064316334396666
[ 46.651607] R10: 3364323064316334 R11: 39666666663d7665 R12: ffff94c1c5f43388
[ 46.658857] R13: ffff94c1d02d3388 R14: ffff94c1c318a360 R15: ffff94c1cf2289c0
[ 46.666108] FS: 00007f65634ff7c0(0000) GS:ffff94c1da200000(0000) knlGS:0000000000000000
[ 46.674331] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 46.680170] CR2: 00007f7dfe984460 CR3: 000000010e894003 CR4: 00000000000606f0
[ 46.687422] Call Trace:
[ 46.689906] <TASK>
[ 46.691950] iwl_mvm_mac_wake_tx_queue+0xec/0x15c [iwlmvm]
[ 46.697601] ieee80211_queue_skb+0x4b3/0x720 [mac80211]
[ 46.702973] ? sta_info_get+0x46/0x60 [mac80211]
[ 46.707703] ieee80211_tx+0xad/0x110 [mac80211]
[ 46.712355] __ieee80211_tx_skb_tid_band+0x71/0x90 [mac80211]
...
In order to avoid this problem, we must also remove the related lists when
station queues are disabled. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: ipc3-topology: Prevent double freeing of ipc_control_data via load_bytes
We have sanity checks for byte controls and if any of the fail the locally
allocated scontrol->ipc_control_data is freed up, but not set to NULL.
On a rollback path of the error the higher level code will also try to free
the scontrol->ipc_control_data which will eventually going to lead to
memory corruption as double freeing memory is not a good thing. |
| Memory corruptions can be remotely triggered in the Control-M/Agent when SSL/TLS communication is configured.
The issue occurs in the following cases:
* Control-M/Agent 9.0.20: SSL/TLS configuration is set to the non-default setting "use_openssl=n";
* Control-M/Agent 9.0.21 and 9.0.22: Agent router configuration uses the non-default settings "JAVA_AR=N" and "use_openssl=n" |
| In the Linux kernel, the following vulnerability has been resolved:
fs/nfs/read: fix double-unlock bug in nfs_return_empty_folio()
Sometimes, when a file was read while it was being truncated by
another NFS client, the kernel could deadlock because folio_unlock()
was called twice, and the second call would XOR back the `PG_locked`
flag.
Most of the time (depending on the timing of the truncation), nobody
notices the problem because folio_unlock() gets called three times,
which flips `PG_locked` back off:
1. vfs_read, nfs_read_folio, ... nfs_read_add_folio,
nfs_return_empty_folio
2. vfs_read, nfs_read_folio, ... netfs_read_collection,
netfs_unlock_abandoned_read_pages
3. vfs_read, ... nfs_do_read_folio, nfs_read_add_folio,
nfs_return_empty_folio
The problem is that nfs_read_add_folio() is not supposed to unlock the
folio if fscache is enabled, and a nfs_netfs_folio_unlock() check is
missing in nfs_return_empty_folio().
Rarely this leads to a warning in netfs_read_collection():
------------[ cut here ]------------
R=0000031c: folio 10 is not locked
WARNING: CPU: 0 PID: 29 at fs/netfs/read_collect.c:133 netfs_read_collection+0x7c0/0xf00
[...]
Workqueue: events_unbound netfs_read_collection_worker
RIP: 0010:netfs_read_collection+0x7c0/0xf00
[...]
Call Trace:
<TASK>
netfs_read_collection_worker+0x67/0x80
process_one_work+0x12e/0x2c0
worker_thread+0x295/0x3a0
Most of the time, however, processes just get stuck forever in
folio_wait_bit_common(), waiting for `PG_locked` to disappear, which
never happens because nobody is really holding the folio lock. |
| In the Linux kernel, the following vulnerability has been resolved:
eth: fbnic: avoid double free when failing to DMA-map FW msg
The semantics are that caller of fbnic_mbx_map_msg() retains
the ownership of the message on error. All existing callers
dutifully free the page. |
| In the Linux kernel, the following vulnerability has been resolved:
net_sched: qfq: Fix double list add in class with netem as child qdisc
As described in Gerrard's report [1], there are use cases where a netem
child qdisc will make the parent qdisc's enqueue callback reentrant.
In the case of qfq, there won't be a UAF, but the code will add the same
classifier to the list twice, which will cause memory corruption.
This patch checks whether the class was already added to the agg->active
list (cl_is_active) before doing the addition to cater for the reentrant
case.
[1] https://lore.kernel.org/netdev/CAHcdcOm+03OD2j6R0=YHKqmy=VgJ8xEOKuP6c7mSgnp-TEJJbw@mail.gmail.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
net_sched: ets: Fix double list add in class with netem as child qdisc
As described in Gerrard's report [1], there are use cases where a netem
child qdisc will make the parent qdisc's enqueue callback reentrant.
In the case of ets, there won't be a UAF, but the code will add the same
classifier to the list twice, which will cause memory corruption.
In addition to checking for qlen being zero, this patch checks whether
the class was already added to the active_list (cl_is_active) before
doing the addition to cater for the reentrant case.
[1] https://lore.kernel.org/netdev/CAHcdcOm+03OD2j6R0=YHKqmy=VgJ8xEOKuP6c7mSgnp-TEJJbw@mail.gmail.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
net_sched: drr: Fix double list add in class with netem as child qdisc
As described in Gerrard's report [1], there are use cases where a netem
child qdisc will make the parent qdisc's enqueue callback reentrant.
In the case of drr, there won't be a UAF, but the code will add the same
classifier to the list twice, which will cause memory corruption.
In addition to checking for qlen being zero, this patch checks whether the
class was already added to the active_list (cl_is_active) before adding
to the list to cover for the reentrant case.
[1] https://lore.kernel.org/netdev/CAHcdcOm+03OD2j6R0=YHKqmy=VgJ8xEOKuP6c7mSgnp-TEJJbw@mail.gmail.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
octeon_ep: Fix host hang issue during device reboot
When the host loses heartbeat messages from the device,
the driver calls the device-specific ndo_stop function,
which frees the resources. If the driver is unloaded in
this scenario, it calls ndo_stop again, attempting to free
resources that have already been freed, leading to a host
hang issue. To resolve this, dev_close should be called
instead of the device-specific stop function.dev_close
internally calls ndo_stop to stop the network interface
and performs additional cleanup tasks. During the driver
unload process, if the device is already down, ndo_stop
is not called. |
| In the Linux kernel, the following vulnerability has been resolved:
s390: fix double free of GS and RI CBs on fork() failure
The pointers for guarded storage and runtime instrumentation control
blocks are stored in the thread_struct of the associated task. These
pointers are initially copied on fork() via arch_dup_task_struct()
and then cleared via copy_thread() before fork() returns. If fork()
happens to fail after the initial task dup and before copy_thread(),
the newly allocated task and associated thread_struct memory are
freed via free_task() -> arch_release_task_struct(). This results in
a double free of the guarded storage and runtime info structs
because the fields in the failed task still refer to memory
associated with the source task.
This problem can manifest as a BUG_ON() in set_freepointer() (with
CONFIG_SLAB_FREELIST_HARDENED enabled) or KASAN splat (if enabled)
when running trinity syscall fuzz tests on s390x. To avoid this
problem, clear the associated pointer fields in
arch_dup_task_struct() immediately after the new task is copied.
Note that the RI flag is still cleared in copy_thread() because it
resides in thread stack memory and that is where stack info is
copied. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: endpoint: pci-epf-test: Fix double free that causes kernel to oops
Fix a kernel oops found while testing the stm32_pcie Endpoint driver
with handling of PERST# deassertion:
During EP initialization, pci_epf_test_alloc_space() allocates all BARs,
which are further freed if epc_set_bar() fails (for instance, due to no
free inbound window).
However, when pci_epc_set_bar() fails, the error path:
pci_epc_set_bar() ->
pci_epf_free_space()
does not clear the previous assignment to epf_test->reg[bar].
Then, if the host reboots, the PERST# deassertion restarts the BAR
allocation sequence with the same allocation failure (no free inbound
window), creating a double free situation since epf_test->reg[bar] was
deallocated and is still non-NULL.
Thus, make sure that pci_epf_alloc_space() and pci_epf_free_space()
invocations are symmetric, and as such, set epf_test->reg[bar] to NULL
when memory is freed.
[kwilczynski: commit log] |
| In the Linux kernel, the following vulnerability has been resolved:
mcb: fix a double free bug in chameleon_parse_gdd()
In chameleon_parse_gdd(), if mcb_device_register() fails, 'mdev'
would be released in mcb_device_register() via put_device().
Thus, goto 'err' label and free 'mdev' again causes a double free.
Just return if mcb_device_register() fails. |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: piix4: Fix adapter not be removed in piix4_remove()
In piix4_probe(), the piix4 adapter will be registered in:
piix4_probe()
piix4_add_adapters_sb800() / piix4_add_adapter()
i2c_add_adapter()
Based on the probed device type, piix4_add_adapters_sb800() or single
piix4_add_adapter() will be called.
For the former case, piix4_adapter_count is set as the number of adapters,
while for antoher case it is not set and kept default *zero*.
When piix4 is removed, piix4_remove() removes the adapters added in
piix4_probe(), basing on the piix4_adapter_count value.
Because the count is zero for the single adapter case, the adapter won't
be removed and makes the sources allocated for adapter leaked, such as
the i2c client and device.
These sources can still be accessed by i2c or bus and cause problems.
An easily reproduced case is that if a new adapter is registered, i2c
will get the leaked adapter and try to call smbus_algorithm, which was
already freed:
Triggered by: rmmod i2c_piix4 && modprobe max31730
BUG: unable to handle page fault for address: ffffffffc053d860
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
Oops: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 3752 Comm: modprobe Tainted: G
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
RIP: 0010:i2c_default_probe (drivers/i2c/i2c-core-base.c:2259) i2c_core
RSP: 0018:ffff888107477710 EFLAGS: 00000246
...
<TASK>
i2c_detect (drivers/i2c/i2c-core-base.c:2302) i2c_core
__process_new_driver (drivers/i2c/i2c-core-base.c:1336) i2c_core
bus_for_each_dev (drivers/base/bus.c:301)
i2c_for_each_dev (drivers/i2c/i2c-core-base.c:1823) i2c_core
i2c_register_driver (drivers/i2c/i2c-core-base.c:1861) i2c_core
do_one_initcall (init/main.c:1296)
do_init_module (kernel/module/main.c:2455)
...
</TASK>
---[ end trace 0000000000000000 ]---
Fix this problem by correctly set piix4_adapter_count as 1 for the
single adapter so it can be normally removed. |
| In the Linux kernel, the following vulnerability has been resolved:
ata: libata-transport: fix double ata_host_put() in ata_tport_add()
In the error path in ata_tport_add(), when calling put_device(),
ata_tport_release() is called, it will put the refcount of 'ap->host'.
And then ata_host_put() is called again, the refcount is decreased
to 0, ata_host_release() is called, all ports are freed and set to
null.
When unbinding the device after failure, ata_host_stop() is called
to release the resources, it leads a null-ptr-deref(), because all
the ports all freed and null.
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008
CPU: 7 PID: 18671 Comm: modprobe Kdump: loaded Tainted: G E 6.1.0-rc3+ #8
pstate: 80400009 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : ata_host_stop+0x3c/0x84 [libata]
lr : release_nodes+0x64/0xd0
Call trace:
ata_host_stop+0x3c/0x84 [libata]
release_nodes+0x64/0xd0
devres_release_all+0xbc/0x1b0
device_unbind_cleanup+0x20/0x70
really_probe+0x158/0x320
__driver_probe_device+0x84/0x120
driver_probe_device+0x44/0x120
__driver_attach+0xb4/0x220
bus_for_each_dev+0x78/0xdc
driver_attach+0x2c/0x40
bus_add_driver+0x184/0x240
driver_register+0x80/0x13c
__pci_register_driver+0x4c/0x60
ahci_pci_driver_init+0x30/0x1000 [ahci]
Fix this by removing redundant ata_host_put() in the error path. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows SMB allows an unauthorized attacker to execute code over a network. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: zfcp: Fix double free of FSF request when qdio send fails
We used to use the wrong type of integer in 'zfcp_fsf_req_send()' to cache
the FSF request ID when sending a new FSF request. This is used in case the
sending fails and we need to remove the request from our internal hash
table again (so we don't keep an invalid reference and use it when we free
the request again).
In 'zfcp_fsf_req_send()' we used to cache the ID as 'int' (signed and 32
bit wide), but the rest of the zfcp code (and the firmware specification)
handles the ID as 'unsigned long'/'u64' (unsigned and 64 bit wide [s390x
ELF ABI]). For one this has the obvious problem that when the ID grows
past 32 bit (this can happen reasonably fast) it is truncated to 32 bit
when storing it in the cache variable and so doesn't match the original ID
anymore. The second less obvious problem is that even when the original ID
has not yet grown past 32 bit, as soon as the 32nd bit is set in the
original ID (0x80000000 = 2'147'483'648) we will have a mismatch when we
cast it back to 'unsigned long'. As the cached variable is of a signed
type, the compiler will choose a sign-extending instruction to load the 32
bit variable into a 64 bit register (e.g.: 'lgf %r11,188(%r15)'). So once
we pass the cached variable into 'zfcp_reqlist_find_rm()' to remove the
request again all the leading zeros will be flipped to ones to extend the
sign and won't match the original ID anymore (this has been observed in
practice).
If we can't successfully remove the request from the hash table again after
'zfcp_qdio_send()' fails (this happens regularly when zfcp cannot notify
the adapter about new work because the adapter is already gone during
e.g. a ChpID toggle) we will end up with a double free. We unconditionally
free the request in the calling function when 'zfcp_fsf_req_send()' fails,
but because the request is still in the hash table we end up with a stale
memory reference, and once the zfcp adapter is either reset during recovery
or shutdown we end up freeing the same memory twice.
The resulting stack traces vary depending on the kernel and have no direct
correlation to the place where the bug occurs. Here are three examples that
have been seen in practice:
list_del corruption. next->prev should be 00000001b9d13800, but was 00000000dead4ead. (next=00000001bd131a00)
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:62!
monitor event: 0040 ilc:2 [#1] PREEMPT SMP
Modules linked in: ...
CPU: 9 PID: 1617 Comm: zfcperp0.0.1740 Kdump: loaded
Hardware name: ...
Krnl PSW : 0704d00180000000 00000003cbeea1f8 (__list_del_entry_valid+0x98/0x140)
R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:1 PM:0 RI:0 EA:3
Krnl GPRS: 00000000916d12f1 0000000080000000 000000000000006d 00000003cb665cd6
0000000000000001 0000000000000000 0000000000000000 00000000d28d21e8
00000000d3844000 00000380099efd28 00000001bd131a00 00000001b9d13800
00000000d3290100 0000000000000000 00000003cbeea1f4 00000380099efc70
Krnl Code: 00000003cbeea1e8: c020004f68a7 larl %r2,00000003cc8d7336
00000003cbeea1ee: c0e50027fd65 brasl %r14,00000003cc3e9cb8
#00000003cbeea1f4: af000000 mc 0,0
>00000003cbeea1f8: c02000920440 larl %r2,00000003cd12aa78
00000003cbeea1fe: c0e500289c25 brasl %r14,00000003cc3fda48
00000003cbeea204: b9040043 lgr %r4,%r3
00000003cbeea208: b9040051 lgr %r5,%r1
00000003cbeea20c: b9040032 lgr %r3,%r2
Call Trace:
[<00000003cbeea1f8>] __list_del_entry_valid+0x98/0x140
([<00000003cbeea1f4>] __list_del_entry_valid+0x94/0x140)
[<000003ff7ff502fe>] zfcp_fsf_req_dismiss_all+0xde/0x150 [zfcp]
[<000003ff7ff49cd0>] zfcp_erp_strategy_do_action+0x160/0x280 [zfcp]
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: cdg: allow tcp_cdg_release() to be called multiple times
Apparently, mptcp is able to call tcp_disconnect() on an already
disconnected flow. This is generally fine, unless current congestion
control is CDG, because it might trigger a double-free [1]
Instead of fixing MPTCP, and future bugs, we can make tcp_disconnect()
more resilient.
[1]
BUG: KASAN: double-free in slab_free mm/slub.c:3539 [inline]
BUG: KASAN: double-free in kfree+0xe2/0x580 mm/slub.c:4567
CPU: 0 PID: 3645 Comm: kworker/0:7 Not tainted 6.0.0-syzkaller-02734-g0326074ff465 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/22/2022
Workqueue: events mptcp_worker
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:317 [inline]
print_report.cold+0x2ba/0x719 mm/kasan/report.c:433
kasan_report_invalid_free+0x81/0x190 mm/kasan/report.c:462
____kasan_slab_free+0x18b/0x1c0 mm/kasan/common.c:356
kasan_slab_free include/linux/kasan.h:200 [inline]
slab_free_hook mm/slub.c:1759 [inline]
slab_free_freelist_hook+0x8b/0x1c0 mm/slub.c:1785
slab_free mm/slub.c:3539 [inline]
kfree+0xe2/0x580 mm/slub.c:4567
tcp_disconnect+0x980/0x1e20 net/ipv4/tcp.c:3145
__mptcp_close_ssk+0x5ca/0x7e0 net/mptcp/protocol.c:2327
mptcp_do_fastclose net/mptcp/protocol.c:2592 [inline]
mptcp_worker+0x78c/0xff0 net/mptcp/protocol.c:2627
process_one_work+0x991/0x1610 kernel/workqueue.c:2289
worker_thread+0x665/0x1080 kernel/workqueue.c:2436
kthread+0x2e4/0x3a0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
</TASK>
Allocated by task 3671:
kasan_save_stack+0x1e/0x40 mm/kasan/common.c:38
kasan_set_track mm/kasan/common.c:45 [inline]
set_alloc_info mm/kasan/common.c:437 [inline]
____kasan_kmalloc mm/kasan/common.c:516 [inline]
____kasan_kmalloc mm/kasan/common.c:475 [inline]
__kasan_kmalloc+0xa9/0xd0 mm/kasan/common.c:525
kmalloc_array include/linux/slab.h:640 [inline]
kcalloc include/linux/slab.h:671 [inline]
tcp_cdg_init+0x10d/0x170 net/ipv4/tcp_cdg.c:380
tcp_init_congestion_control+0xab/0x550 net/ipv4/tcp_cong.c:193
tcp_reinit_congestion_control net/ipv4/tcp_cong.c:217 [inline]
tcp_set_congestion_control+0x96c/0xaa0 net/ipv4/tcp_cong.c:391
do_tcp_setsockopt+0x505/0x2320 net/ipv4/tcp.c:3513
tcp_setsockopt+0xd4/0x100 net/ipv4/tcp.c:3801
mptcp_setsockopt+0x35f/0x2570 net/mptcp/sockopt.c:844
__sys_setsockopt+0x2d6/0x690 net/socket.c:2252
__do_sys_setsockopt net/socket.c:2263 [inline]
__se_sys_setsockopt net/socket.c:2260 [inline]
__x64_sys_setsockopt+0xba/0x150 net/socket.c:2260
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 16:
kasan_save_stack+0x1e/0x40 mm/kasan/common.c:38
kasan_set_track+0x21/0x30 mm/kasan/common.c:45
kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:370
____kasan_slab_free mm/kasan/common.c:367 [inline]
____kasan_slab_free+0x166/0x1c0 mm/kasan/common.c:329
kasan_slab_free include/linux/kasan.h:200 [inline]
slab_free_hook mm/slub.c:1759 [inline]
slab_free_freelist_hook+0x8b/0x1c0 mm/slub.c:1785
slab_free mm/slub.c:3539 [inline]
kfree+0xe2/0x580 mm/slub.c:4567
tcp_cleanup_congestion_control+0x70/0x120 net/ipv4/tcp_cong.c:226
tcp_v4_destroy_sock+0xdd/0x750 net/ipv4/tcp_ipv4.c:2254
tcp_v6_destroy_sock+0x11/0x20 net/ipv6/tcp_ipv6.c:1969
inet_csk_destroy_sock+0x196/0x440 net/ipv4/inet_connection_sock.c:1157
tcp_done+0x23b/0x340 net/ipv4/tcp.c:4649
tcp_rcv_state_process+0x40e7/0x4990 net/ipv4/tcp_input.c:6624
tcp_v6_do_rcv+0x3fc/0x13c0 net/ipv6/tcp_ipv6.c:1525
tcp_v6_rcv+0x2e8e/0x3830 net/ipv6/tcp_ipv6.c:1759
ip6_protocol_deliver_rcu+0x2db/0x1950 net/ipv6/ip6_input.c:439
ip6_input_finish+0x14c/0x2c0 net/ipv6/ip6_input.c:484
NF_HOOK include/linux/netfilter.h:302 [inline]
NF_HOOK include/linux/netfilter.h:296 [inline]
ip6_input+0x9c/0xd
---truncated--- |