| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Untrusted pointer dereference in Microsoft Graphics Component allows an unauthorized attacker to execute code over a network. |
| A flaw was found in rsync which could be triggered when rsync compares file checksums. This flaw allows an attacker to manipulate the checksum length (s2length) to cause a comparison between a checksum and uninitialized memory and leak one byte of uninitialized stack data at a time. |
| In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: ep: Update read pointer only after buffer is written
Inside mhi_ep_ring_add_element, the read pointer (rd_offset) is updated
before the buffer is written, potentially causing race conditions where
the host sees an updated read pointer before the buffer is actually
written. Updating rd_offset prematurely can lead to the host accessing
an uninitialized or incomplete element, resulting in data corruption.
Invoke the buffer write before updating rd_offset to ensure the element
is fully written before signaling its availability. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: common: st_sensors: Fix use of uninitialize device structs
Throughout the various probe functions &indio_dev->dev is used before it
is initialized. This caused a kernel panic in st_sensors_power_enable()
when the call to devm_regulator_bulk_get_enable() fails and then calls
dev_err_probe() with the uninitialized device.
This seems to only cause a panic with dev_err_probe(), dev_err(),
dev_warn() and dev_info() don't seem to cause a panic, but are fixed
as well.
The issue is reported and traced here: [1] |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix error unwind in rxe_create_qp()
In the function rxe_create_qp(), rxe_qp_from_init() is called to
initialize qp, internally things like the spin locks are not setup until
rxe_qp_init_req().
If an error occures before this point then the unwind will call
rxe_cleanup() and eventually to rxe_qp_do_cleanup()/rxe_cleanup_task()
which will oops when trying to access the uninitialized spinlock.
Move the spinlock initializations earlier before any failures. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_reject_ipv6: fix nf_reject_ip6_tcphdr_put()
syzbot reported that nf_reject_ip6_tcphdr_put() was possibly sending
garbage on the four reserved tcp bits (th->res1)
Use skb_put_zero() to clear the whole TCP header,
as done in nf_reject_ip_tcphdr_put()
BUG: KMSAN: uninit-value in nf_reject_ip6_tcphdr_put+0x688/0x6c0 net/ipv6/netfilter/nf_reject_ipv6.c:255
nf_reject_ip6_tcphdr_put+0x688/0x6c0 net/ipv6/netfilter/nf_reject_ipv6.c:255
nf_send_reset6+0xd84/0x15b0 net/ipv6/netfilter/nf_reject_ipv6.c:344
nft_reject_inet_eval+0x3c1/0x880 net/netfilter/nft_reject_inet.c:48
expr_call_ops_eval net/netfilter/nf_tables_core.c:240 [inline]
nft_do_chain+0x438/0x22a0 net/netfilter/nf_tables_core.c:288
nft_do_chain_inet+0x41a/0x4f0 net/netfilter/nft_chain_filter.c:161
nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline]
nf_hook_slow+0xf4/0x400 net/netfilter/core.c:626
nf_hook include/linux/netfilter.h:269 [inline]
NF_HOOK include/linux/netfilter.h:312 [inline]
ipv6_rcv+0x29b/0x390 net/ipv6/ip6_input.c:310
__netif_receive_skb_one_core net/core/dev.c:5661 [inline]
__netif_receive_skb+0x1da/0xa00 net/core/dev.c:5775
process_backlog+0x4ad/0xa50 net/core/dev.c:6108
__napi_poll+0xe7/0x980 net/core/dev.c:6772
napi_poll net/core/dev.c:6841 [inline]
net_rx_action+0xa5a/0x19b0 net/core/dev.c:6963
handle_softirqs+0x1ce/0x800 kernel/softirq.c:554
__do_softirq+0x14/0x1a kernel/softirq.c:588
do_softirq+0x9a/0x100 kernel/softirq.c:455
__local_bh_enable_ip+0x9f/0xb0 kernel/softirq.c:382
local_bh_enable include/linux/bottom_half.h:33 [inline]
rcu_read_unlock_bh include/linux/rcupdate.h:908 [inline]
__dev_queue_xmit+0x2692/0x5610 net/core/dev.c:4450
dev_queue_xmit include/linux/netdevice.h:3105 [inline]
neigh_resolve_output+0x9ca/0xae0 net/core/neighbour.c:1565
neigh_output include/net/neighbour.h:542 [inline]
ip6_finish_output2+0x2347/0x2ba0 net/ipv6/ip6_output.c:141
__ip6_finish_output net/ipv6/ip6_output.c:215 [inline]
ip6_finish_output+0xbb8/0x14b0 net/ipv6/ip6_output.c:226
NF_HOOK_COND include/linux/netfilter.h:303 [inline]
ip6_output+0x356/0x620 net/ipv6/ip6_output.c:247
dst_output include/net/dst.h:450 [inline]
NF_HOOK include/linux/netfilter.h:314 [inline]
ip6_xmit+0x1ba6/0x25d0 net/ipv6/ip6_output.c:366
inet6_csk_xmit+0x442/0x530 net/ipv6/inet6_connection_sock.c:135
__tcp_transmit_skb+0x3b07/0x4880 net/ipv4/tcp_output.c:1466
tcp_transmit_skb net/ipv4/tcp_output.c:1484 [inline]
tcp_connect+0x35b6/0x7130 net/ipv4/tcp_output.c:4143
tcp_v6_connect+0x1bcc/0x1e40 net/ipv6/tcp_ipv6.c:333
__inet_stream_connect+0x2ef/0x1730 net/ipv4/af_inet.c:679
inet_stream_connect+0x6a/0xd0 net/ipv4/af_inet.c:750
__sys_connect_file net/socket.c:2061 [inline]
__sys_connect+0x606/0x690 net/socket.c:2078
__do_sys_connect net/socket.c:2088 [inline]
__se_sys_connect net/socket.c:2085 [inline]
__x64_sys_connect+0x91/0xe0 net/socket.c:2085
x64_sys_call+0x27a5/0x3ba0 arch/x86/include/generated/asm/syscalls_64.h:43
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was stored to memory at:
nf_reject_ip6_tcphdr_put+0x60c/0x6c0 net/ipv6/netfilter/nf_reject_ipv6.c:249
nf_send_reset6+0xd84/0x15b0 net/ipv6/netfilter/nf_reject_ipv6.c:344
nft_reject_inet_eval+0x3c1/0x880 net/netfilter/nft_reject_inet.c:48
expr_call_ops_eval net/netfilter/nf_tables_core.c:240 [inline]
nft_do_chain+0x438/0x22a0 net/netfilter/nf_tables_core.c:288
nft_do_chain_inet+0x41a/0x4f0 net/netfilter/nft_chain_filter.c:161
nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline]
nf_hook_slow+0xf4/0x400 net/netfilter/core.c:626
nf_hook include/linux/netfilter.h:269 [inline]
NF_HOOK include/linux/netfilter.h:312 [inline]
ipv6_rcv+0x29b/0x390 net/ipv6/ip6_input.c:310
__netif_receive_skb_one_core
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/vm: move xe_svm_init() earlier
In xe_vm_close_and_put() we need to be able to call xe_svm_fini(),
however during vm creation we can call this on the error path, before
having actually initialised the svm state, leading to various splats
followed by a fatal NPD.
(cherry picked from commit 4f296d77cf49fcb5f90b4674123ad7f3a0676165) |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: wil6210: debugfs: fix uninitialized variable use in `wil_write_file_wmi()`
Commit 7a4836560a61 changes simple_write_to_buffer() with memdup_user()
but it forgets to change the value to be returned that came from
simple_write_to_buffer() call. It results in the following warning:
warning: variable 'rc' is uninitialized when used here [-Wuninitialized]
return rc;
^~
Remove rc variable and just return the passed in length if the
memdup_user() succeeds. |
| In the Linux kernel, the following vulnerability has been resolved:
sched_ext: bpf_iter_scx_dsq_new() should always initialize iterator
BPF programs may call next() and destroy() on BPF iterators even after new()
returns an error value (e.g. bpf_for_each() macro ignores error returns from
new()). bpf_iter_scx_dsq_new() could leave the iterator in an uninitialized
state after an error return causing bpf_iter_scx_dsq_next() to dereference
garbage data. Make bpf_iter_scx_dsq_new() always clear $kit->dsq so that
next() and destroy() become noops. |
| In the Linux kernel, the following vulnerability has been resolved:
kcm: fix strp_init() order and cleanup
strp_init() is called just a few lines above this csk->sk_user_data
check, it also initializes strp->work etc., therefore, it is
unnecessary to call strp_done() to cancel the freshly initialized
work.
And if sk_user_data is already used by KCM, psock->strp should not be
touched, particularly strp->work state, so we need to move strp_init()
after the csk->sk_user_data check.
This also makes a lockdep warning reported by syzbot go away. |
| In the Linux kernel, the following vulnerability has been resolved:
ptp: ocp: Limit signal/freq counts in summary output functions
The debugfs summary output could access uninitialized elements in
the freq_in[] and signal_out[] arrays, causing NULL pointer
dereferences and triggering a kernel Oops (page_fault_oops).
This patch adds u8 fields (nr_freq_in, nr_signal_out) to track the
number of initialized elements, with a maximum of 4 per array.
The summary output functions are updated to respect these limits,
preventing out-of-bounds access and ensuring safe array handling.
Widen the label variables because the change confuses GCC about
max length of the strings. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Fix uninitialized memcache pointer in user_mem_abort()
Commit fce886a60207 ("KVM: arm64: Plumb the pKVM MMU in KVM") made the
initialization of the local memcache variable in user_mem_abort()
conditional, leaving a codepath where it is used uninitialized via
kvm_pgtable_stage2_map().
This can fail on any path that requires a stage-2 allocation
without transition via a permission fault or dirty logging.
Fix this by making sure that memcache is always valid. |
| In the Linux kernel, the following vulnerability has been resolved:
net: mctp: Don't access ifa_index when missing
In mctp_dump_addrinfo, ifa_index can be used to filter interfaces, but
only when the struct ifaddrmsg is provided. Otherwise it will be
comparing to uninitialised memory - reproducible in the syzkaller case from
dhcpd, or busybox "ip addr show".
The kernel MCTP implementation has always filtered by ifa_index, so
existing userspace programs expecting to dump MCTP addresses must
already be passing a valid ifa_index value (either 0 or a real index).
BUG: KMSAN: uninit-value in mctp_dump_addrinfo+0x208/0xac0 net/mctp/device.c:128
mctp_dump_addrinfo+0x208/0xac0 net/mctp/device.c:128
rtnl_dump_all+0x3ec/0x5b0 net/core/rtnetlink.c:4380
rtnl_dumpit+0xd5/0x2f0 net/core/rtnetlink.c:6824
netlink_dump+0x97b/0x1690 net/netlink/af_netlink.c:2309 |
| A maliciously crafted STP file, when parsed in stp_aim_x64_vc15d.dll through Autodesk applications, can be used to uninitialized variables. This vulnerability, along with other vulnerabilities, can lead to code execution in the current process. |
| A maliciously crafted MODEL file, when parsed in ASMkern229A.dllthrough Autodesk applications, can be used to uninitialized variables. This vulnerability, along with other vulnerabilities, could lead to code execution in the current process. |
| In the Linux kernel, the following vulnerability has been resolved:
net: qrtr: start MHI channel after endpoit creation
MHI channel may generates event/interrupt right after enabling.
It may leads to 2 race conditions issues.
1)
Such event may be dropped by qcom_mhi_qrtr_dl_callback() at check:
if (!qdev || mhi_res->transaction_status)
return;
Because dev_set_drvdata(&mhi_dev->dev, qdev) may be not performed at
this moment. In this situation qrtr-ns will be unable to enumerate
services in device.
---------------------------------------------------------------
2)
Such event may come at the moment after dev_set_drvdata() and
before qrtr_endpoint_register(). In this case kernel will panic with
accessing wrong pointer at qcom_mhi_qrtr_dl_callback():
rc = qrtr_endpoint_post(&qdev->ep, mhi_res->buf_addr,
mhi_res->bytes_xferd);
Because endpoint is not created yet.
--------------------------------------------------------------
So move mhi_prepare_for_transfer_autoqueue after endpoint creation
to fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: mv88e6xxx: fix -ENOENT when deleting VLANs and MST is unsupported
Russell King reports that on the ZII dev rev B, deleting a bridge VLAN
from a user port fails with -ENOENT:
https://lore.kernel.org/netdev/Z_lQXNP0s5-IiJzd@shell.armlinux.org.uk/
This comes from mv88e6xxx_port_vlan_leave() -> mv88e6xxx_mst_put(),
which tries to find an MST entry in &chip->msts associated with the SID,
but fails and returns -ENOENT as such.
But we know that this chip does not support MST at all, so that is not
surprising. The question is why does the guard in mv88e6xxx_mst_put()
not exit early:
if (!sid)
return 0;
And the answer seems to be simple: the sid comes from vlan.sid which
supposedly was previously populated by mv88e6xxx_vtu_get().
But some chip->info->ops->vtu_getnext() implementations do not populate
vlan.sid, for example see mv88e6185_g1_vtu_getnext(). In that case,
later in mv88e6xxx_port_vlan_leave() we are using a garbage sid which is
just residual stack memory.
Testing for sid == 0 covers all cases of a non-bridge VLAN or a bridge
VLAN mapped to the default MSTI. For some chips, SID 0 is valid and
installed by mv88e6xxx_stu_setup(). A chip which does not support the
STU would implicitly only support mapping all VLANs to the default MSTI,
so although SID 0 is not valid, it would be sufficient, if we were to
zero-initialize the vlan structure, to fix the bug, due to the
coincidence that a test for vlan.sid == 0 already exists and leads to
the same (correct) behavior.
Another option which would be sufficient would be to add a test for
mv88e6xxx_has_stu() inside mv88e6xxx_mst_put(), symmetric to the one
which already exists in mv88e6xxx_mst_get(). But that placement means
the caller will have to dereference vlan.sid, which means it will access
uninitialized memory, which is not nice even if it ignores it later.
So we end up making both modifications, in order to not rely just on the
sid == 0 coincidence, but also to avoid having uninitialized structure
fields which might get temporarily accessed. |
| In the Linux kernel, the following vulnerability has been resolved:
pds_core: handle unsupported PDS_CORE_CMD_FW_CONTROL result
If the FW doesn't support the PDS_CORE_CMD_FW_CONTROL command
the driver might at the least print garbage and at the worst
crash when the user runs the "devlink dev info" devlink command.
This happens because the stack variable fw_list is not 0
initialized which results in fw_list.num_fw_slots being a
garbage value from the stack. Then the driver tries to access
fw_list.fw_names[i] with i >= ARRAY_SIZE and runs off the end
of the array.
Fix this by initializing the fw_list and by not failing
completely if the devcmd fails because other useful information
is printed via devlink dev info even if the devcmd fails. |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: pn533: initialize struct pn533_out_arg properly
struct pn533_out_arg used as a temporary context for out_urb is not
initialized properly. Its uninitialized 'phy' field can be dereferenced in
error cases inside pn533_out_complete() callback function. It causes the
following failure:
general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.2.0-rc3-next-20230110-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
RIP: 0010:pn533_out_complete.cold+0x15/0x44 drivers/nfc/pn533/usb.c:441
Call Trace:
<IRQ>
__usb_hcd_giveback_urb+0x2b6/0x5c0 drivers/usb/core/hcd.c:1671
usb_hcd_giveback_urb+0x384/0x430 drivers/usb/core/hcd.c:1754
dummy_timer+0x1203/0x32d0 drivers/usb/gadget/udc/dummy_hcd.c:1988
call_timer_fn+0x1da/0x800 kernel/time/timer.c:1700
expire_timers+0x234/0x330 kernel/time/timer.c:1751
__run_timers kernel/time/timer.c:2022 [inline]
__run_timers kernel/time/timer.c:1995 [inline]
run_timer_softirq+0x326/0x910 kernel/time/timer.c:2035
__do_softirq+0x1fb/0xaf6 kernel/softirq.c:571
invoke_softirq kernel/softirq.c:445 [inline]
__irq_exit_rcu+0x123/0x180 kernel/softirq.c:650
irq_exit_rcu+0x9/0x20 kernel/softirq.c:662
sysvec_apic_timer_interrupt+0x97/0xc0 arch/x86/kernel/apic/apic.c:1107
Initialize the field with the pn533_usb_phy currently used.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| Use of uninitialized resource in Windows Routing and Remote Access Service (RRAS) allows an authorized attacker to disclose information over a network. |