| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| An issue was discovered in FRRouting FRR through 9.0.1. A crash can occur for a crafted BGP UPDATE message without mandatory attributes, e.g., one with only an unknown transit attribute. |
| An issue was discovered in FRRouting FRR through 9.0.1. It mishandles malformed MP_REACH_NLRI data, leading to a crash. |
| A PAN-OS URL filtering policy misconfiguration could allow a network-based attacker to conduct reflected and amplified TCP denial-of-service (RDoS) attacks. The DoS attack would appear to originate from a Palo Alto Networks PA-Series (hardware), VM-Series (virtual) and CN-Series (container) firewall against an attacker-specified target. To be misused by an external attacker, the firewall configuration must have a URL filtering profile with one or more blocked categories assigned to a source zone that has an external facing interface. This configuration is not typical for URL filtering and, if set, is likely unintended by the administrator. If exploited, this issue would not impact the confidentiality, integrity, or availability of our products. However, the resulting denial-of-service (DoS) attack may help obfuscate the identity of the attacker and implicate the firewall as the source of the attack. We have taken prompt action to address this issue in our PAN-OS software. All software updates for this issue are expected to be released no later than the week of August 15, 2022. This issue does not impact Panorama M-Series or Panorama virtual appliances. This issue has been resolved for all Cloud NGFW and Prisma Access customers and no additional action is required from them. |
| In Amanda 3.5.1, an information leak vulnerability was found in the calcsize SUID binary. An attacker can abuse this vulnerability to know if a directory exists or not anywhere in the fs. The binary will use `opendir()` as root directly without checking the path, letting the attacker provide an arbitrary path. |
| calibre before 5.32.0 contains a regular expression that is vulnerable to ReDoS (Regular Expression Denial of Service) in html_preprocess_rules in ebooks/conversion/preprocess.py. |
| BlueZ is a Bluetooth protocol stack for Linux. In affected versions a vulnerability exists in sdp_cstate_alloc_buf which allocates memory which will always be hung in the singly linked list of cstates and will not be freed. This will cause a memory leak over time. The data can be a very large object, which can be caused by an attacker continuously sending sdp packets and this may cause the service of the target device to crash. |
| Scrapy versions up to 2.13.2 are vulnerable to a denial of service (DoS) attack due to a flaw in its brotli decompression implementation. The protection mechanism against decompression bombs fails to mitigate the brotli variant, allowing remote servers to crash clients with less than 80GB of available memory. This occurs because brotli can achieve extremely high compression ratios for zero-filled data, leading to excessive memory consumption during decompression. |
| Denial of service of the web server through specific requests to this protocol |
| Malicious or unintentional API requests can be used to add significant amount of data to caches. Caches may evict information that is required to operate the web frontend, which leads to unavailability of the component. Please deploy the provided updates and patch releases. No publicly available exploits are known |
| An issue was discovered in Samsung Mobile Processor, Wearable Processor, and Modem Exynos 980, 990, 850, 1080, 2100, 1280, 2200, 1330, 1380, 1480, 2400, 9110, W920, W930, W1000, Modem 5123, Modem 5300, Modem 5400. The absence of a NULL check leads to a Denial of Service when an attacker sends malformed MM packets to the target. |
| A denial-of-service issue was addressed with improved validation. This issue is fixed in macOS Sonoma 14.8, macOS Sequoia 15.7, iOS 18.7 and iPadOS 18.7. An app may be able to cause a denial-of-service. |
| ** REJECT ** DO NOT USE THIS CANDIDATE NUMBER. ConsultIDs: none. Reason: This candidate was withdrawn by its CNA. Further investigation showed that it was not a security issue. Notes: Based on the analysis by MITRE and review of community feedback, the reported conditions represent expected and intentional behavior within dnsmasq's documented design, rather than security vulnerabilities. |
| ** REJECT ** DO NOT USE THIS CANDIDATE NUMBER. ConsultIDs: none. Reason: This candidate was withdrawn by its CNA. Further investigation showed that it was not a security issue. Notes: Based on the analysis by MITRE and review of community feedback, the reported conditions represent expected and intentional behavior within dnsmasq's documented design, rather than security vulnerabilities. |
| When segmenting specially crafted text, segmentation would corrupt memory leading to a potentially exploitable crash. This vulnerability affects Firefox < 134, Firefox ESR < 128.6, Thunderbird < 134, and Thunderbird < 128.6. |
| There is a LOW severity vulnerability affecting CPython, specifically the
'http.cookies' standard library module.
When parsing cookies that contained backslashes for quoted characters in
the cookie value, the parser would use an algorithm with quadratic
complexity, resulting in excess CPU resources being used while parsing the
value. |
| The issue was addressed with improved checks. This issue is fixed in iPadOS 17.7.3, watchOS 11.2, visionOS 2.2, tvOS 18.2, macOS Sequoia 15.2, Safari 18.2, iOS 18.2 and iPadOS 18.2. Processing maliciously crafted web content may lead to an unexpected process crash. |
| In the Linux kernel, the following vulnerability has been resolved:
virtio/vsock: Fix accept_queue memory leak
As the final stages of socket destruction may be delayed, it is possible
that virtio_transport_recv_listen() will be called after the accept_queue
has been flushed, but before the SOCK_DONE flag has been set. As a result,
sockets enqueued after the flush would remain unremoved, leading to a
memory leak.
vsock_release
__vsock_release
lock
virtio_transport_release
virtio_transport_close
schedule_delayed_work(close_work)
sk_shutdown = SHUTDOWN_MASK
(!) flush accept_queue
release
virtio_transport_recv_pkt
vsock_find_bound_socket
lock
if flag(SOCK_DONE) return
virtio_transport_recv_listen
child = vsock_create_connected
(!) vsock_enqueue_accept(child)
release
close_work
lock
virtio_transport_do_close
set_flag(SOCK_DONE)
virtio_transport_remove_sock
vsock_remove_sock
vsock_remove_bound
release
Introduce a sk_shutdown check to disallow vsock_enqueue_accept() during
socket destruction.
unreferenced object 0xffff888109e3f800 (size 2040):
comm "kworker/5:2", pid 371, jiffies 4294940105
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
28 00 0b 40 00 00 00 00 00 00 00 00 00 00 00 00 (..@............
backtrace (crc 9e5f4e84):
[<ffffffff81418ff1>] kmem_cache_alloc_noprof+0x2c1/0x360
[<ffffffff81d27aa0>] sk_prot_alloc+0x30/0x120
[<ffffffff81d2b54c>] sk_alloc+0x2c/0x4b0
[<ffffffff81fe049a>] __vsock_create.constprop.0+0x2a/0x310
[<ffffffff81fe6d6c>] virtio_transport_recv_pkt+0x4dc/0x9a0
[<ffffffff81fe745d>] vsock_loopback_work+0xfd/0x140
[<ffffffff810fc6ac>] process_one_work+0x20c/0x570
[<ffffffff810fce3f>] worker_thread+0x1bf/0x3a0
[<ffffffff811070dd>] kthread+0xdd/0x110
[<ffffffff81044fdd>] ret_from_fork+0x2d/0x50
[<ffffffff8100785a>] ret_from_fork_asm+0x1a/0x30 |
| Tornado is a Python web framework and asynchronous networking library. The algorithm used for parsing HTTP cookies in Tornado versions prior to 6.4.2 sometimes has quadratic complexity, leading to excessive CPU consumption when parsing maliciously-crafted cookie headers. This parsing occurs in the event loop thread and may block the processing of other requests. Version 6.4.2 fixes the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_ipip: Fix memory leak when changing remote IPv6 address
The device stores IPv6 addresses that are used for encapsulation in
linear memory that is managed by the driver.
Changing the remote address of an ip6gre net device never worked
properly, but since cited commit the following reproducer [1] would
result in a warning [2] and a memory leak [3]. The problem is that the
new remote address is never added by the driver to its hash table (and
therefore the device) and the old address is never removed from it.
Fix by programming the new address when the configuration of the ip6gre
net device changes and removing the old one. If the address did not
change, then the above would result in increasing the reference count of
the address and then decreasing it.
[1]
# ip link add name bla up type ip6gre local 2001:db8:1::1 remote 2001:db8:2::1 tos inherit ttl inherit
# ip link set dev bla type ip6gre remote 2001:db8:3::1
# ip link del dev bla
# devlink dev reload pci/0000:01:00.0
[2]
WARNING: CPU: 0 PID: 1682 at drivers/net/ethernet/mellanox/mlxsw/spectrum.c:3002 mlxsw_sp_ipv6_addr_put+0x140/0x1d0
Modules linked in:
CPU: 0 UID: 0 PID: 1682 Comm: ip Not tainted 6.12.0-rc3-custom-g86b5b55bc835 #151
Hardware name: Nvidia SN5600/VMOD0013, BIOS 5.13 05/31/2023
RIP: 0010:mlxsw_sp_ipv6_addr_put+0x140/0x1d0
[...]
Call Trace:
<TASK>
mlxsw_sp_router_netdevice_event+0x55f/0x1240
notifier_call_chain+0x5a/0xd0
call_netdevice_notifiers_info+0x39/0x90
unregister_netdevice_many_notify+0x63e/0x9d0
rtnl_dellink+0x16b/0x3a0
rtnetlink_rcv_msg+0x142/0x3f0
netlink_rcv_skb+0x50/0x100
netlink_unicast+0x242/0x390
netlink_sendmsg+0x1de/0x420
____sys_sendmsg+0x2bd/0x320
___sys_sendmsg+0x9a/0xe0
__sys_sendmsg+0x7a/0xd0
do_syscall_64+0x9e/0x1a0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
[3]
unreferenced object 0xffff898081f597a0 (size 32):
comm "ip", pid 1626, jiffies 4294719324
hex dump (first 32 bytes):
20 01 0d b8 00 02 00 00 00 00 00 00 00 00 00 01 ...............
21 49 61 83 80 89 ff ff 00 00 00 00 01 00 00 00 !Ia.............
backtrace (crc fd9be911):
[<00000000df89c55d>] __kmalloc_cache_noprof+0x1da/0x260
[<00000000ff2a1ddb>] mlxsw_sp_ipv6_addr_kvdl_index_get+0x281/0x340
[<000000009ddd445d>] mlxsw_sp_router_netdevice_event+0x47b/0x1240
[<00000000743e7757>] notifier_call_chain+0x5a/0xd0
[<000000007c7b9e13>] call_netdevice_notifiers_info+0x39/0x90
[<000000002509645d>] register_netdevice+0x5f7/0x7a0
[<00000000c2e7d2a9>] ip6gre_newlink_common.isra.0+0x65/0x130
[<0000000087cd6d8d>] ip6gre_newlink+0x72/0x120
[<000000004df7c7cc>] rtnl_newlink+0x471/0xa20
[<0000000057ed632a>] rtnetlink_rcv_msg+0x142/0x3f0
[<0000000032e0d5b5>] netlink_rcv_skb+0x50/0x100
[<00000000908bca63>] netlink_unicast+0x242/0x390
[<00000000cdbe1c87>] netlink_sendmsg+0x1de/0x420
[<0000000011db153e>] ____sys_sendmsg+0x2bd/0x320
[<000000003b6d53eb>] ___sys_sendmsg+0x9a/0xe0
[<00000000cae27c62>] __sys_sendmsg+0x7a/0xd0 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath10k: Fix memory leak in management tx
In the current logic, memory is allocated for storing the MSDU context
during management packet TX but this memory is not being freed during
management TX completion. Similar leaks are seen in the management TX
cleanup logic.
Kmemleak reports this problem as below,
unreferenced object 0xffffff80b64ed250 (size 16):
comm "kworker/u16:7", pid 148, jiffies 4294687130 (age 714.199s)
hex dump (first 16 bytes):
00 2b d8 d8 80 ff ff ff c4 74 e9 fd 07 00 00 00 .+.......t......
backtrace:
[<ffffffe6e7b245dc>] __kmem_cache_alloc_node+0x1e4/0x2d8
[<ffffffe6e7adde88>] kmalloc_trace+0x48/0x110
[<ffffffe6bbd765fc>] ath10k_wmi_tlv_op_gen_mgmt_tx_send+0xd4/0x1d8 [ath10k_core]
[<ffffffe6bbd3eed4>] ath10k_mgmt_over_wmi_tx_work+0x134/0x298 [ath10k_core]
[<ffffffe6e78d5974>] process_scheduled_works+0x1ac/0x400
[<ffffffe6e78d60b8>] worker_thread+0x208/0x328
[<ffffffe6e78dc890>] kthread+0x100/0x1c0
[<ffffffe6e78166c0>] ret_from_fork+0x10/0x20
Free the memory during completion and cleanup to fix the leak.
Protect the mgmt_pending_tx idr_remove() operation in
ath10k_wmi_tlv_op_cleanup_mgmt_tx_send() using ar->data_lock similar to
other instances.
Tested-on: WCN3990 hw1.0 SNOC WLAN.HL.2.0-01387-QCAHLSWMTPLZ-1 |