CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
fs/proc: task_mmu.c: don't read mapcount for migration entry
The syzbot reported the below BUG:
kernel BUG at include/linux/page-flags.h:785!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 4392 Comm: syz-executor560 Not tainted 5.16.0-rc6-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:PageDoubleMap include/linux/page-flags.h:785 [inline]
RIP: 0010:__page_mapcount+0x2d2/0x350 mm/util.c:744
Call Trace:
page_mapcount include/linux/mm.h:837 [inline]
smaps_account+0x470/0xb10 fs/proc/task_mmu.c:466
smaps_pte_entry fs/proc/task_mmu.c:538 [inline]
smaps_pte_range+0x611/0x1250 fs/proc/task_mmu.c:601
walk_pmd_range mm/pagewalk.c:128 [inline]
walk_pud_range mm/pagewalk.c:205 [inline]
walk_p4d_range mm/pagewalk.c:240 [inline]
walk_pgd_range mm/pagewalk.c:277 [inline]
__walk_page_range+0xe23/0x1ea0 mm/pagewalk.c:379
walk_page_vma+0x277/0x350 mm/pagewalk.c:530
smap_gather_stats.part.0+0x148/0x260 fs/proc/task_mmu.c:768
smap_gather_stats fs/proc/task_mmu.c:741 [inline]
show_smap+0xc6/0x440 fs/proc/task_mmu.c:822
seq_read_iter+0xbb0/0x1240 fs/seq_file.c:272
seq_read+0x3e0/0x5b0 fs/seq_file.c:162
vfs_read+0x1b5/0x600 fs/read_write.c:479
ksys_read+0x12d/0x250 fs/read_write.c:619
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
The reproducer was trying to read /proc/$PID/smaps when calling
MADV_FREE at the mean time. MADV_FREE may split THPs if it is called
for partial THP. It may trigger the below race:
CPU A CPU B
----- -----
smaps walk: MADV_FREE:
page_mapcount()
PageCompound()
split_huge_page()
page = compound_head(page)
PageDoubleMap(page)
When calling PageDoubleMap() this page is not a tail page of THP anymore
so the BUG is triggered.
This could be fixed by elevated refcount of the page before calling
mapcount, but that would prevent it from counting migration entries, and
it seems overkilling because the race just could happen when PMD is
split so all PTE entries of tail pages are actually migration entries,
and smaps_account() does treat migration entries as mapcount == 1 as
Kirill pointed out.
Add a new parameter for smaps_account() to tell this entry is migration
entry then skip calling page_mapcount(). Don't skip getting mapcount
for device private entries since they do track references with mapcount.
Pagemap also has the similar issue although it was not reported. Fixed
it as well.
[shy828301@gmail.com: v4]
[nathan@kernel.org: avoid unused variable warning in pagemap_pmd_range()] |
SummaryThis advisory addresses a security vulnerability in Mautic related to the segment cloning functionality. This vulnerability allows any authenticated user to clone segments without proper authorization checks.
Insecure Direct Object Reference (IDOR) / Missing Authorization: A missing authorization vulnerability exists in the cloneAction of the segment management. This allows an authenticated user to bypass intended permission restrictions and clone segments even if they lack the necessary permissions to create new ones.
MitigationUpdate Mautic to a version that implements proper authorization checks for the cloneAction within the ListController.php. Ensure that users attempting to clone segments possess the appropriate creation permissions. |
In the Linux kernel, the following vulnerability has been resolved:
perf: Fix list corruption in perf_cgroup_switch()
There's list corruption on cgrp_cpuctx_list. This happens on the
following path:
perf_cgroup_switch: list_for_each_entry(cgrp_cpuctx_list)
cpu_ctx_sched_in
ctx_sched_in
ctx_pinned_sched_in
merge_sched_in
perf_cgroup_event_disable: remove the event from the list
Use list_for_each_entry_safe() to allow removing an entry during
iteration. |
In the Linux kernel, the following vulnerability has been resolved:
s390/cio: verify the driver availability for path_event call
If no driver is attached to a device or the driver does not provide the
path_event function, an FCES path-event on this device could end up in a
kernel-panic. Verify the driver availability before the path_event
function call. |
In the Linux kernel, the following vulnerability has been resolved:
mm: don't try to NUMA-migrate COW pages that have other uses
Oded Gabbay reports that enabling NUMA balancing causes corruption with
his Gaudi accelerator test load:
"All the details are in the bug, but the bottom line is that somehow,
this patch causes corruption when the numa balancing feature is
enabled AND we don't use process affinity AND we use GUP to pin pages
so our accelerator can DMA to/from system memory.
Either disabling numa balancing, using process affinity to bind to
specific numa-node or reverting this patch causes the bug to
disappear"
and Oded bisected the issue to commit 09854ba94c6a ("mm: do_wp_page()
simplification").
Now, the NUMA balancing shouldn't actually be changing the writability
of a page, and as such shouldn't matter for COW. But it appears it
does. Suspicious.
However, regardless of that, the condition for enabling NUMA faults in
change_pte_range() is nonsensical. It uses "page_mapcount(page)" to
decide if a COW page should be NUMA-protected or not, and that makes
absolutely no sense.
The number of mappings a page has is irrelevant: not only does GUP get a
reference to a page as in Oded's case, but the other mappings migth be
paged out and the only reference to them would be in the page count.
Since we should never try to NUMA-balance a page that we can't move
anyway due to other references, just fix the code to use 'page_count()'.
Oded confirms that that fixes his issue.
Now, this does imply that something in NUMA balancing ends up changing
page protections (other than the obvious one of making the page
inaccessible to get the NUMA faulting information). Otherwise the COW
simplification wouldn't matter - since doing the GUP on the page would
make sure it's writable.
The cause of that permission change would be good to figure out too,
since it clearly results in spurious COW events - but fixing the
nonsensical test that just happened to work before is obviously the
CorrectThing(tm) to do regardless. |
The Fintelligence Calculator plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'fintelligence-calculator' shortcode in all versions up to, and including, 1.0.3 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
The Customify theme for WordPress is vulnerable to Cross-Site Request Forgery in version 0.4.11. This is due to missing or incorrect nonce validation on the reset_customize_section function. This makes it possible for unauthenticated attackers to reset theme customization settings via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. |
The ContentMX Content Publisher plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 1.0.6. This is due to missing or incorrect nonce validation on the cmx_activate_connection function. This makes it possible for unauthenticated attackers to bind their own ContentMX connection via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. |
In the Linux kernel, the following vulnerability has been resolved:
parisc: Fix data TLB miss in sba_unmap_sg
Rolf Eike Beer reported the following bug:
[1274934.746891] Bad Address (null pointer deref?): Code=15 (Data TLB miss fault) at addr 0000004140000018
[1274934.746891] CPU: 3 PID: 5549 Comm: cmake Not tainted 5.15.4-gentoo-parisc64 #4
[1274934.746891] Hardware name: 9000/785/C8000
[1274934.746891]
[1274934.746891] YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI
[1274934.746891] PSW: 00001000000001001111111000001110 Not tainted
[1274934.746891] r00-03 000000ff0804fe0e 0000000040bc9bc0 00000000406760e4 0000004140000000
[1274934.746891] r04-07 0000000040b693c0 0000004140000000 000000004a2b08b0 0000000000000001
[1274934.746891] r08-11 0000000041f98810 0000000000000000 000000004a0a7000 0000000000000001
[1274934.746891] r12-15 0000000040bddbc0 0000000040c0cbc0 0000000040bddbc0 0000000040bddbc0
[1274934.746891] r16-19 0000000040bde3c0 0000000040bddbc0 0000000040bde3c0 0000000000000007
[1274934.746891] r20-23 0000000000000006 000000004a368950 0000000000000000 0000000000000001
[1274934.746891] r24-27 0000000000001fff 000000000800000e 000000004a1710f0 0000000040b693c0
[1274934.746891] r28-31 0000000000000001 0000000041f988b0 0000000041f98840 000000004a171118
[1274934.746891] sr00-03 00000000066e5800 0000000000000000 0000000000000000 00000000066e5800
[1274934.746891] sr04-07 0000000000000000 0000000000000000 0000000000000000 0000000000000000
[1274934.746891]
[1274934.746891] IASQ: 0000000000000000 0000000000000000 IAOQ: 00000000406760e8 00000000406760ec
[1274934.746891] IIR: 48780030 ISR: 0000000000000000 IOR: 0000004140000018
[1274934.746891] CPU: 3 CR30: 00000040e3a9c000 CR31: ffffffffffffffff
[1274934.746891] ORIG_R28: 0000000040acdd58
[1274934.746891] IAOQ[0]: sba_unmap_sg+0xb0/0x118
[1274934.746891] IAOQ[1]: sba_unmap_sg+0xb4/0x118
[1274934.746891] RP(r2): sba_unmap_sg+0xac/0x118
[1274934.746891] Backtrace:
[1274934.746891] [<00000000402740cc>] dma_unmap_sg_attrs+0x6c/0x70
[1274934.746891] [<000000004074d6bc>] scsi_dma_unmap+0x54/0x60
[1274934.746891] [<00000000407a3488>] mptscsih_io_done+0x150/0xd70
[1274934.746891] [<0000000040798600>] mpt_interrupt+0x168/0xa68
[1274934.746891] [<0000000040255a48>] __handle_irq_event_percpu+0xc8/0x278
[1274934.746891] [<0000000040255c34>] handle_irq_event_percpu+0x3c/0xd8
[1274934.746891] [<000000004025ecb4>] handle_percpu_irq+0xb4/0xf0
[1274934.746891] [<00000000402548e0>] generic_handle_irq+0x50/0x70
[1274934.746891] [<000000004019a254>] call_on_stack+0x18/0x24
[1274934.746891]
[1274934.746891] Kernel panic - not syncing: Bad Address (null pointer deref?)
The bug is caused by overrunning the sglist and incorrectly testing
sg_dma_len(sglist) before nents. Normally this doesn't cause a crash,
but in this case sglist crossed a page boundary. This occurs in the
following code:
while (sg_dma_len(sglist) && nents--) {
The fix is simply to test nents first and move the decrement of nents
into the loop. |
The WP Dispatcher plugin for WordPress is vulnerable to SQL Injection via the ‘id’ parameter in all versions up to, and including, 1.2.0 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Contributor-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. |
Mattermost versions 10.7.x <= 10.7.0, 10.6.x <= 10.6.2, 10.5.x <= 10.5.3, 9.11.x <= 9.11.12 fail to properly validate permissions when changing team privacy settings, allowing team administrators without the 'invite user' permission to access and modify team invite IDs via the /api/v4/teams/:teamId/privacy endpoint. |
The WP SinoType plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 1.0. This is due to missing or incorrect nonce validation on the sinotype_config function. This makes it possible for unauthenticated attackers to modify typography settings via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. |
The Auto Bulb Finder for WordPress plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'abf_vehicle' shortcode in all versions up to, and including, 2.8.0 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
The Notification Bar plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 2.2. This is due to missing or incorrect nonce validation on the 'subscriber-list-empty.php' file. This makes it possible for unauthenticated attackers to empty the subscriber list via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. |
The Schema Plugin For Divi, Gutenberg & Shortcodes plugin for WordPress is vulnerable to Object Instantiation in all versions up to, and including, 4.3.2 via deserialization of untrusted input via the wpt_schema_breadcrumbs shortcode. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject a PHP Object. No known POP chain is present in the vulnerable software, which means this vulnerability has no impact unless another plugin or theme containing a POP chain is installed on the site. If a POP chain is present via an additional plugin or theme installed on the target system, it may allow the attacker to perform actions like delete arbitrary files, retrieve sensitive data, or execute code depending on the POP chain present. |
The Flexi plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin for WordPress's flexi-form-tag shortcode in all versions up to, and including, 4.28 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
The X Addons for Elementor plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the Youtube Video ID field in all versions up to, and including, 1.0.14. This is due to insufficient input sanitization and output escaping on the Youtube Video ID parameter. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an affected page. |
The AP Background plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'adv_parallax_back' shortcode in all versions up to, and including, 3.8.2 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
The Ultimate Viral Quiz plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 1.0. This is due to missing or incorrect nonce validation on thesave_options() function. This makes it possible for unauthenticated attackers to update the plugin's settings via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. |
SQL injection vulnerability in Joomla module mod_vvisit_counter v2.0.4j3. This vulnerability allows an attacker to retrieve database content via the ‘cip_vvisitcounter’ cookie at all endpoints where the plugin counts visits. |