Search

Search Results (324350 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-68379 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Fix null deref on srq->rq.queue after resize failure A NULL pointer dereference can occur in rxe_srq_chk_attr() when ibv_modify_srq() is invoked twice in succession under certain error conditions. The first call may fail in rxe_queue_resize(), which leads rxe_srq_from_attr() to set srq->rq.queue = NULL. The second call then triggers a crash (null deref) when accessing srq->rq.queue->buf->index_mask. Call Trace: <TASK> rxe_modify_srq+0x170/0x480 [rdma_rxe] ? __pfx_rxe_modify_srq+0x10/0x10 [rdma_rxe] ? uverbs_try_lock_object+0x4f/0xa0 [ib_uverbs] ? rdma_lookup_get_uobject+0x1f0/0x380 [ib_uverbs] ib_uverbs_modify_srq+0x204/0x290 [ib_uverbs] ? __pfx_ib_uverbs_modify_srq+0x10/0x10 [ib_uverbs] ? tryinc_node_nr_active+0xe6/0x150 ? uverbs_fill_udata+0xed/0x4f0 [ib_uverbs] ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x2c0/0x470 [ib_uverbs] ? __pfx_ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x10/0x10 [ib_uverbs] ? uverbs_fill_udata+0xed/0x4f0 [ib_uverbs] ib_uverbs_run_method+0x55a/0x6e0 [ib_uverbs] ? __pfx_ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x10/0x10 [ib_uverbs] ib_uverbs_cmd_verbs+0x54d/0x800 [ib_uverbs] ? __pfx_ib_uverbs_cmd_verbs+0x10/0x10 [ib_uverbs] ? __pfx___raw_spin_lock_irqsave+0x10/0x10 ? __pfx_do_vfs_ioctl+0x10/0x10 ? ioctl_has_perm.constprop.0.isra.0+0x2c7/0x4c0 ? __pfx_ioctl_has_perm.constprop.0.isra.0+0x10/0x10 ib_uverbs_ioctl+0x13e/0x220 [ib_uverbs] ? __pfx_ib_uverbs_ioctl+0x10/0x10 [ib_uverbs] __x64_sys_ioctl+0x138/0x1c0 do_syscall_64+0x82/0x250 ? fdget_pos+0x58/0x4c0 ? ksys_write+0xf3/0x1c0 ? __pfx_ksys_write+0x10/0x10 ? do_syscall_64+0xc8/0x250 ? __pfx_vm_mmap_pgoff+0x10/0x10 ? fget+0x173/0x230 ? fput+0x2a/0x80 ? ksys_mmap_pgoff+0x224/0x4c0 ? do_syscall_64+0xc8/0x250 ? do_user_addr_fault+0x37b/0xfe0 ? clear_bhb_loop+0x50/0xa0 ? clear_bhb_loop+0x50/0xa0 ? clear_bhb_loop+0x50/0xa0 entry_SYSCALL_64_after_hwframe+0x76/0x7e
CVE-2025-68378 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix stackmap overflow check in __bpf_get_stackid() Syzkaller reported a KASAN slab-out-of-bounds write in __bpf_get_stackid() when copying stack trace data. The issue occurs when the perf trace contains more stack entries than the stack map bucket can hold, leading to an out-of-bounds write in the bucket's data array.
CVE-2025-68377 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: ns: initialize ns_list_node for initial namespaces Make sure that the list is always initialized for initial namespaces.
CVE-2025-68376 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: coresight: ETR: Fix ETR buffer use-after-free issue When ETR is enabled as CS_MODE_SYSFS, if the buffer size is changed and enabled again, currently sysfs_buf will point to the newly allocated memory(buf_new) and free the old memory(buf_old). But the etr_buf that is being used by the ETR remains pointed to buf_old, not updated to buf_new. In this case, it will result in a memory use-after-free issue. Fix this by checking ETR's mode before updating and releasing buf_old, if the mode is CS_MODE_SYSFS, then skip updating and releasing it.
CVE-2025-68375 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: perf/x86: Fix NULL event access and potential PEBS record loss When intel_pmu_drain_pebs_icl() is called to drain PEBS records, the perf_event_overflow() could be called to process the last PEBS record. While perf_event_overflow() could trigger the interrupt throttle and stop all events of the group, like what the below call-chain shows. perf_event_overflow() -> __perf_event_overflow() ->__perf_event_account_interrupt() -> perf_event_throttle_group() -> perf_event_throttle() -> event->pmu->stop() -> x86_pmu_stop() The side effect of stopping the events is that all corresponding event pointers in cpuc->events[] array are cleared to NULL. Assume there are two PEBS events (event a and event b) in a group. When intel_pmu_drain_pebs_icl() calls perf_event_overflow() to process the last PEBS record of PEBS event a, interrupt throttle is triggered and all pointers of event a and event b are cleared to NULL. Then intel_pmu_drain_pebs_icl() tries to process the last PEBS record of event b and encounters NULL pointer access. To avoid this issue, move cpuc->events[] clearing from x86_pmu_stop() to x86_pmu_del(). It's safe since cpuc->active_mask or cpuc->pebs_enabled is always checked before access the event pointer from cpuc->events[].
CVE-2025-68374 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: md: fix rcu protection in md_wakeup_thread We attempted to use RCU to protect the pointer 'thread', but directly passed the value when calling md_wakeup_thread(). This means that the RCU pointer has been acquired before rcu_read_lock(), which renders rcu_read_lock() ineffective and could lead to a use-after-free.
CVE-2025-68373 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: md: avoid repeated calls to del_gendisk There is a uaf problem which is found by case 23rdev-lifetime: Oops: general protection fault, probably for non-canonical address 0xdead000000000122 RIP: 0010:bdi_unregister+0x4b/0x170 Call Trace: <TASK> __del_gendisk+0x356/0x3e0 mddev_unlock+0x351/0x360 rdev_attr_store+0x217/0x280 kernfs_fop_write_iter+0x14a/0x210 vfs_write+0x29e/0x550 ksys_write+0x74/0xf0 do_syscall_64+0xbb/0x380 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7ff5250a177e The sequence is: 1. rdev remove path gets reconfig_mutex 2. rdev remove path release reconfig_mutex in mddev_unlock 3. md stop calls do_md_stop and sets MD_DELETED 4. rdev remove path calls del_gendisk because MD_DELETED is set 5. md stop path release reconfig_mutex and calls del_gendisk again So there is a race condition we should resolve. This patch adds a flag MD_DO_DELETE to avoid the race condition.
CVE-2025-68372 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: nbd: defer config put in recv_work There is one uaf issue in recv_work when running NBD_CLEAR_SOCK and NBD_CMD_RECONFIGURE: nbd_genl_connect // conf_ref=2 (connect and recv_work A) nbd_open // conf_ref=3 recv_work A done // conf_ref=2 NBD_CLEAR_SOCK // conf_ref=1 nbd_genl_reconfigure // conf_ref=2 (trigger recv_work B) close nbd // conf_ref=1 recv_work B config_put // conf_ref=0 atomic_dec(&config->recv_threads); -> UAF Or only running NBD_CLEAR_SOCK: nbd_genl_connect // conf_ref=2 nbd_open // conf_ref=3 NBD_CLEAR_SOCK // conf_ref=2 close nbd nbd_release config_put // conf_ref=1 recv_work config_put // conf_ref=0 atomic_dec(&config->recv_threads); -> UAF Commit 87aac3a80af5 ("nbd: call nbd_config_put() before notifying the waiter") moved nbd_config_put() to run before waking up the waiter in recv_work, in order to ensure that nbd_start_device_ioctl() would not be woken up while nbd->task_recv was still uncleared. However, in nbd_start_device_ioctl(), after being woken up it explicitly calls flush_workqueue() to make sure all current works are finished. Therefore, there is no need to move the config put ahead of the wakeup. Move nbd_config_put() to the end of recv_work, so that the reference is held for the whole lifetime of the worker thread. This makes sure the config cannot be freed while recv_work is still running, even if clear + reconfigure interleave. In addition, we don't need to worry about recv_work dropping the last nbd_put (which causes deadlock): path A (netlink with NBD_CFLAG_DESTROY_ON_DISCONNECT): connect // nbd_refs=1 (trigger recv_work) open nbd // nbd_refs=2 NBD_CLEAR_SOCK close nbd nbd_release nbd_disconnect_and_put flush_workqueue // recv_work done nbd_config_put nbd_put // nbd_refs=1 nbd_put // nbd_refs=0 queue_work path B (netlink without NBD_CFLAG_DESTROY_ON_DISCONNECT): connect // nbd_refs=2 (trigger recv_work) open nbd // nbd_refs=3 NBD_CLEAR_SOCK // conf_refs=2 close nbd nbd_release nbd_config_put // conf_refs=1 nbd_put // nbd_refs=2 recv_work done // conf_refs=0, nbd_refs=1 rmmod // nbd_refs=0 Depends-on: e2daec488c57 ("nbd: Fix hungtask when nbd_config_put")
CVE-2025-68371 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: scsi: smartpqi: Fix device resources accessed after device removal Correct possible race conditions during device removal. Previously, a scheduled work item to reset a LUN could still execute after the device was removed, leading to use-after-free and other resource access issues. This race condition occurs because the abort handler may schedule a LUN reset concurrently with device removal via sdev_destroy(), leading to use-after-free and improper access to freed resources. - Check in the device reset handler if the device is still present in the controller's SCSI device list before running; if not, the reset is skipped. - Cancel any pending TMF work that has not started in sdev_destroy(). - Ensure device freeing in sdev_destroy() is done while holding the LUN reset mutex to avoid races with ongoing resets.
CVE-2025-68370 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: coresight: tmc: add the handle of the event to the path The handle is essential for retrieving the AUX_EVENT of each CPU and is required in perf mode. It has been added to the coresight_path so that dependent devices can access it from the path when needed. The existing bug can be reproduced with: perf record -e cs_etm//k -C 0-9 dd if=/dev/zero of=/dev/null Showing an oops as follows: Unable to handle kernel paging request at virtual address 000f6e84934ed19e Call trace: tmc_etr_get_buffer+0x30/0x80 [coresight_tmc] (P) catu_enable_hw+0xbc/0x3d0 [coresight_catu] catu_enable+0x70/0xe0 [coresight_catu] coresight_enable_path+0xb0/0x258 [coresight]
CVE-2025-68369 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: ntfs3: init run lock for extend inode After setting the inode mode of $Extend to a regular file, executing the truncate system call will enter the do_truncate() routine, causing the run_lock uninitialized error reported by syzbot. Prior to patch 4e8011ffec79, if the inode mode of $Extend was not set to a regular file, the do_truncate() routine would not be entered. Add the run_lock initialization when loading $Extend. syzbot reported: INFO: trying to register non-static key. Call Trace: dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 assign_lock_key+0x133/0x150 kernel/locking/lockdep.c:984 register_lock_class+0x105/0x320 kernel/locking/lockdep.c:1299 __lock_acquire+0x99/0xd20 kernel/locking/lockdep.c:5112 lock_acquire+0x120/0x360 kernel/locking/lockdep.c:5868 down_write+0x96/0x1f0 kernel/locking/rwsem.c:1590 ntfs_set_size+0x140/0x200 fs/ntfs3/inode.c:860 ntfs_extend+0x1d9/0x970 fs/ntfs3/file.c:387 ntfs_setattr+0x2e8/0xbe0 fs/ntfs3/file.c:808
CVE-2025-68368 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: md: init bioset in mddev_init IO operations may be needed before md_run(), such as updating metadata after writing sysfs. Without bioset, this triggers a NULL pointer dereference as below: BUG: kernel NULL pointer dereference, address: 0000000000000020 Call Trace: md_update_sb+0x658/0xe00 new_level_store+0xc5/0x120 md_attr_store+0xc9/0x1e0 sysfs_kf_write+0x6f/0xa0 kernfs_fop_write_iter+0x141/0x2a0 vfs_write+0x1fc/0x5a0 ksys_write+0x79/0x180 __x64_sys_write+0x1d/0x30 x64_sys_call+0x2818/0x2880 do_syscall_64+0xa9/0x580 entry_SYSCALL_64_after_hwframe+0x4b/0x53 Reproducer ``` mdadm -CR /dev/md0 -l1 -n2 /dev/sd[cd] echo inactive > /sys/block/md0/md/array_state echo 10 > /sys/block/md0/md/new_level ``` mddev_init() can only be called once per mddev, no need to test if bioset has been initialized anymore.
CVE-2025-68367 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: macintosh/mac_hid: fix race condition in mac_hid_toggle_emumouse The following warning appears when running syzkaller, and this issue also exists in the mainline code. ------------[ cut here ]------------ list_add double add: new=ffffffffa57eee28, prev=ffffffffa57eee28, next=ffffffffa5e63100. WARNING: CPU: 0 PID: 1491 at lib/list_debug.c:35 __list_add_valid_or_report+0xf7/0x130 Modules linked in: CPU: 0 PID: 1491 Comm: syz.1.28 Not tainted 6.6.0+ #3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:__list_add_valid_or_report+0xf7/0x130 RSP: 0018:ff1100010dfb7b78 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffffffffa57eee18 RCX: ffffffff97fc9817 RDX: 0000000000040000 RSI: ffa0000002383000 RDI: 0000000000000001 RBP: ffffffffa57eee28 R08: 0000000000000001 R09: ffe21c0021bf6f2c R10: 0000000000000001 R11: 6464615f7473696c R12: ffffffffa5e63100 R13: ffffffffa57eee28 R14: ffffffffa57eee28 R15: ff1100010dfb7d48 FS: 00007fb14398b640(0000) GS:ff11000119600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000010d096005 CR4: 0000000000773ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 80000000 Call Trace: <TASK> input_register_handler+0xb3/0x210 mac_hid_start_emulation+0x1c5/0x290 mac_hid_toggle_emumouse+0x20a/0x240 proc_sys_call_handler+0x4c2/0x6e0 new_sync_write+0x1b1/0x2d0 vfs_write+0x709/0x950 ksys_write+0x12a/0x250 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x78/0xe2 The WARNING occurs when two processes concurrently write to the mac-hid emulation sysctl, causing a race condition in mac_hid_toggle_emumouse(). Both processes read old_val=0, then both try to register the input handler, leading to a double list_add of the same handler. CPU0 CPU1 ------------------------- ------------------------- vfs_write() //write 1 vfs_write() //write 1 proc_sys_write() proc_sys_write() mac_hid_toggle_emumouse() mac_hid_toggle_emumouse() old_val = *valp // old_val=0 old_val = *valp // old_val=0 mutex_lock_killable() proc_dointvec() // *valp=1 mac_hid_start_emulation() input_register_handler() mutex_unlock() mutex_lock_killable() proc_dointvec() mac_hid_start_emulation() input_register_handler() //Trigger Warning mutex_unlock() Fix this by moving the old_val read inside the mutex lock region.
CVE-2025-68366 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: nbd: defer config unlock in nbd_genl_connect There is one use-after-free warning when running NBD_CMD_CONNECT and NBD_CLEAR_SOCK: nbd_genl_connect nbd_alloc_and_init_config // config_refs=1 nbd_start_device // config_refs=2 set NBD_RT_HAS_CONFIG_REF open nbd // config_refs=3 recv_work done // config_refs=2 NBD_CLEAR_SOCK // config_refs=1 close nbd // config_refs=0 refcount_inc -> uaf ------------[ cut here ]------------ refcount_t: addition on 0; use-after-free. WARNING: CPU: 24 PID: 1014 at lib/refcount.c:25 refcount_warn_saturate+0x12e/0x290 nbd_genl_connect+0x16d0/0x1ab0 genl_family_rcv_msg_doit+0x1f3/0x310 genl_rcv_msg+0x44a/0x790 The issue can be easily reproduced by adding a small delay before refcount_inc(&nbd->config_refs) in nbd_genl_connect(): mutex_unlock(&nbd->config_lock); if (!ret) { set_bit(NBD_RT_HAS_CONFIG_REF, &config->runtime_flags); + printk("before sleep\n"); + mdelay(5 * 1000); + printk("after sleep\n"); refcount_inc(&nbd->config_refs); nbd_connect_reply(info, nbd->index); }
CVE-2025-68365 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Initialize allocated memory before use KMSAN reports: Multiple uninitialized values detected: - KMSAN: uninit-value in ntfs_read_hdr (3) - KMSAN: uninit-value in bcmp (3) Memory is allocated by __getname(), which is a wrapper for kmem_cache_alloc(). This memory is used before being properly cleared. Change kmem_cache_alloc() to kmem_cache_zalloc() to properly allocate and clear memory before use.
CVE-2025-68364 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: ocfs2: relax BUG() to ocfs2_error() in __ocfs2_move_extent() In '__ocfs2_move_extent()', relax 'BUG()' to 'ocfs2_error()' just to avoid crashing the whole kernel due to a filesystem corruption.
CVE-2025-68363 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: bpf: Check skb->transport_header is set in bpf_skb_check_mtu The bpf_skb_check_mtu helper needs to use skb->transport_header when the BPF_MTU_CHK_SEGS flag is used: bpf_skb_check_mtu(skb, ifindex, &mtu_len, 0, BPF_MTU_CHK_SEGS) The transport_header is not always set. There is a WARN_ON_ONCE report when CONFIG_DEBUG_NET is enabled + skb->gso_size is set + bpf_prog_test_run is used: WARNING: CPU: 1 PID: 2216 at ./include/linux/skbuff.h:3071 skb_gso_validate_network_len bpf_skb_check_mtu bpf_prog_3920e25740a41171_tc_chk_segs_flag # A test in the next patch bpf_test_run bpf_prog_test_run_skb For a normal ingress skb (not test_run), skb_reset_transport_header is performed but there is plan to avoid setting it as described in commit 2170a1f09148 ("net: no longer reset transport_header in __netif_receive_skb_core()"). This patch fixes the bpf helper by checking skb_transport_header_was_set(). The check is done just before skb->transport_header is used, to avoid breaking the existing bpf prog. The WARN_ON_ONCE is limited to bpf_prog_test_run, so targeting bpf-next.
CVE-2025-68362 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: rtl818x: rtl8187: Fix potential buffer underflow in rtl8187_rx_cb() The rtl8187_rx_cb() calculates the rx descriptor header address by subtracting its size from the skb tail pointer. However, it does not validate if the received packet (skb->len from urb->actual_length) is large enough to contain this header. If a truncated packet is received, this will lead to a buffer underflow, reading memory before the start of the skb data area, and causing a kernel panic. Add length checks for both rtl8187 and rtl8187b descriptor headers before attempting to access them, dropping the packet cleanly if the check fails.
CVE-2025-68361 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: erofs: limit the level of fs stacking for file-backed mounts Otherwise, it could cause potential kernel stack overflow (e.g., EROFS mounting itself).
CVE-2025-68360 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: wed: use proper wed reference in mt76 wed driver callabacks MT7996 driver can use both wed and wed_hif2 devices to offload traffic from/to the wireless NIC. In the current codebase we assume to always use the primary wed device in wed callbacks resulting in the following crash if the hw runs wed_hif2 (e.g. 6GHz link). [ 297.455876] Unable to handle kernel read from unreadable memory at virtual address 000000000000080a [ 297.464928] Mem abort info: [ 297.467722] ESR = 0x0000000096000005 [ 297.471461] EC = 0x25: DABT (current EL), IL = 32 bits [ 297.476766] SET = 0, FnV = 0 [ 297.479809] EA = 0, S1PTW = 0 [ 297.482940] FSC = 0x05: level 1 translation fault [ 297.487809] Data abort info: [ 297.490679] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000 [ 297.496156] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 297.501196] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 297.506500] user pgtable: 4k pages, 39-bit VAs, pgdp=0000000107480000 [ 297.512927] [000000000000080a] pgd=08000001097fb003, p4d=08000001097fb003, pud=08000001097fb003, pmd=0000000000000000 [ 297.523532] Internal error: Oops: 0000000096000005 [#1] SMP [ 297.715393] CPU: 2 UID: 0 PID: 45 Comm: kworker/u16:2 Tainted: G O 6.12.50 #0 [ 297.723908] Tainted: [O]=OOT_MODULE [ 297.727384] Hardware name: Banana Pi BPI-R4 (2x SFP+) (DT) [ 297.732857] Workqueue: nf_ft_offload_del nf_flow_rule_route_ipv6 [nf_flow_table] [ 297.740254] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 297.747205] pc : mt76_wed_offload_disable+0x64/0xa0 [mt76] [ 297.752688] lr : mtk_wed_flow_remove+0x58/0x80 [ 297.757126] sp : ffffffc080fe3ae0 [ 297.760430] x29: ffffffc080fe3ae0 x28: ffffffc080fe3be0 x27: 00000000deadbef7 [ 297.767557] x26: ffffff80c5ebca00 x25: 0000000000000001 x24: ffffff80c85f4c00 [ 297.774683] x23: ffffff80c1875b78 x22: ffffffc080d42cd0 x21: ffffffc080660018 [ 297.781809] x20: ffffff80c6a076d0 x19: ffffff80c6a043c8 x18: 0000000000000000 [ 297.788935] x17: 0000000000000000 x16: 0000000000000001 x15: 0000000000000000 [ 297.796060] x14: 0000000000000019 x13: ffffff80c0ad8ec0 x12: 00000000fa83b2da [ 297.803185] x11: ffffff80c02700c0 x10: ffffff80c0ad8ec0 x9 : ffffff81fef96200 [ 297.810311] x8 : ffffff80c02700c0 x7 : ffffff80c02700d0 x6 : 0000000000000002 [ 297.817435] x5 : 0000000000000400 x4 : 0000000000000000 x3 : 0000000000000000 [ 297.824561] x2 : 0000000000000001 x1 : 0000000000000800 x0 : ffffff80c6a063c8 [ 297.831686] Call trace: [ 297.834123] mt76_wed_offload_disable+0x64/0xa0 [mt76] [ 297.839254] mtk_wed_flow_remove+0x58/0x80 [ 297.843342] mtk_flow_offload_cmd+0x434/0x574 [ 297.847689] mtk_wed_setup_tc_block_cb+0x30/0x40 [ 297.852295] nf_flow_offload_ipv6_hook+0x7f4/0x964 [nf_flow_table] [ 297.858466] nf_flow_rule_route_ipv6+0x438/0x4a4 [nf_flow_table] [ 297.864463] process_one_work+0x174/0x300 [ 297.868465] worker_thread+0x278/0x430 [ 297.872204] kthread+0xd8/0xdc [ 297.875251] ret_from_fork+0x10/0x20 [ 297.878820] Code: 928b5ae0 8b000273 91400a60 f943fa61 (79401421) [ 297.884901] ---[ end trace 0000000000000000 ]--- Fix the issue detecting the proper wed reference to use running wed callabacks.