Search Results (14296 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50464 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mt76: mt7915: Fix PCI device refcount leak in mt7915_pci_init_hif2() As comment of pci_get_device() says, it returns a pci_device with its refcount increased. We need to call pci_dev_put() to decrease the refcount. Save the return value of pci_get_device() and call pci_dev_put() to decrease the refcount.
CVE-2023-53491 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: start_kernel: Add __no_stack_protector function attribute Back during the discussion of commit a9a3ed1eff36 ("x86: Fix early boot crash on gcc-10, third try") we discussed the need for a function attribute to control the omission of stack protectors on a per-function basis; at the time Clang had support for no_stack_protector but GCC did not. This was fixed in gcc-11. Now that the function attribute is available, let's start using it. Callers of boot_init_stack_canary need to use this function attribute unless they're compiled with -fno-stack-protector, otherwise the canary stored in the stack slot of the caller will differ upon the call to boot_init_stack_canary. This will lead to a call to __stack_chk_fail() then panic.
CVE-2022-50461 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: ethernet: ti: am65-cpsw: Fix PM runtime leakage in am65_cpsw_nuss_ndo_slave_open() Ensure pm_runtime_put() is issued in error path.
CVE-2023-53484 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: lib: cpu_rmap: Avoid use after free on rmap->obj array entries When calling irq_set_affinity_notifier() with NULL at the notify argument, it will cause freeing of the glue pointer in the corresponding array entry but will leave the pointer in the array. A subsequent call to free_irq_cpu_rmap() will try to free this entry again leading to possible use after free. Fix that by setting NULL to the array entry and checking that we have non-zero at the array entry when iterating over the array in free_irq_cpu_rmap(). The current code does not suffer from this since there are no cases where irq_set_affinity_notifier(irq, NULL) (note the NULL passed for the notify arg) is called, followed by a call to free_irq_cpu_rmap() so we don't hit and issue. Subsequent patches in this series excersize this flow, hence the required fix.
CVE-2023-53485 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: fs: jfs: Fix UBSAN: array-index-out-of-bounds in dbAllocDmapLev Syzkaller reported the following issue: UBSAN: array-index-out-of-bounds in fs/jfs/jfs_dmap.c:1965:6 index -84 is out of range for type 's8[341]' (aka 'signed char[341]') CPU: 1 PID: 4995 Comm: syz-executor146 Not tainted 6.4.0-rc6-syzkaller-00037-gb6dad5178cea #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/27/2023 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106 ubsan_epilogue lib/ubsan.c:217 [inline] __ubsan_handle_out_of_bounds+0x11c/0x150 lib/ubsan.c:348 dbAllocDmapLev+0x3e5/0x430 fs/jfs/jfs_dmap.c:1965 dbAllocCtl+0x113/0x920 fs/jfs/jfs_dmap.c:1809 dbAllocAG+0x28f/0x10b0 fs/jfs/jfs_dmap.c:1350 dbAlloc+0x658/0xca0 fs/jfs/jfs_dmap.c:874 dtSplitUp fs/jfs/jfs_dtree.c:974 [inline] dtInsert+0xda7/0x6b00 fs/jfs/jfs_dtree.c:863 jfs_create+0x7b6/0xbb0 fs/jfs/namei.c:137 lookup_open fs/namei.c:3492 [inline] open_last_lookups fs/namei.c:3560 [inline] path_openat+0x13df/0x3170 fs/namei.c:3788 do_filp_open+0x234/0x490 fs/namei.c:3818 do_sys_openat2+0x13f/0x500 fs/open.c:1356 do_sys_open fs/open.c:1372 [inline] __do_sys_openat fs/open.c:1388 [inline] __se_sys_openat fs/open.c:1383 [inline] __x64_sys_openat+0x247/0x290 fs/open.c:1383 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f1f4e33f7e9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 51 14 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffc21129578 EFLAGS: 00000246 ORIG_RAX: 0000000000000101 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f1f4e33f7e9 RDX: 000000000000275a RSI: 0000000020000040 RDI: 00000000ffffff9c RBP: 00007f1f4e2ff080 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f1f4e2ff110 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 </TASK> The bug occurs when the dbAllocDmapLev()function attempts to access dp->tree.stree[leafidx + LEAFIND] while the leafidx value is negative. To rectify this, the patch introduces a safeguard within the dbAllocDmapLev() function. A check has been added to verify if leafidx is negative. If it is, the function immediately returns an I/O error, preventing any further execution that could potentially cause harm. Tested via syzbot.
CVE-2022-50460 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cifs: Fix xid leak in cifs_flock() If not flock, before return -ENOLCK, should free the xid, otherwise, the xid will be leaked.
CVE-2023-53476 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iw_cxgb4: Fix potential NULL dereference in c4iw_fill_res_cm_id_entry() This condition needs to match the previous "if (epcp->state == LISTEN) {" exactly to avoid a NULL dereference of either "listen_ep" or "ep". The problem is that "epcp" has been re-assigned so just testing "if (epcp->state == LISTEN) {" a second time is not sufficient.
CVE-2023-53449 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: s390/dasd: Fix potential memleak in dasd_eckd_init() `dasd_reserve_req` is allocated before `dasd_vol_info_req`, and it also needs to be freed before the error returns, just like the other cases in this function.
CVE-2022-50463 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/52xx: Fix a resource leak in an error handling path The error handling path of mpc52xx_lpbfifo_probe() has a request_irq() that is not balanced by a corresponding free_irq(). Add the missing call, as already done in the remove function.
CVE-2022-50454 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/nouveau: fix a use-after-free in nouveau_gem_prime_import_sg_table() nouveau_bo_init() is backed by ttm_bo_init() and ferries its return code back to the caller. On failures, ttm will call nouveau_bo_del_ttm() and free the memory.Thus, when nouveau_bo_init() returns an error, the gem object has already been released. Then the call to nouveau_bo_ref() will use the freed "nvbo->bo" and lead to a use-after-free bug. We should delete the call to nouveau_bo_ref() to avoid the use-after-free.
CVE-2023-53455 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/vc4: drop all currently held locks if deadlock happens If vc4_hdmi_reset_link() returns -EDEADLK, it means that a deadlock happened in the locking context. This situation should be addressed by dropping all currently held locks and block until the contended lock becomes available. Currently, vc4 is not dealing with the deadlock properly, producing the following output when PROVE_LOCKING is enabled: [ 825.612809] ------------[ cut here ]------------ [ 825.612852] WARNING: CPU: 1 PID: 116 at drivers/gpu/drm/drm_modeset_lock.c:276 drm_modeset_drop_locks+0x60/0x68 [drm] [ 825.613458] Modules linked in: 8021q mrp garp stp llc raspberrypi_cpufreq brcmfmac brcmutil crct10dif_ce hci_uart cfg80211 btqca btbcm bluetooth vc4 raspberrypi_hwmon snd_soc_hdmi_codec cec clk_raspberrypi ecdh_generic drm_display_helper ecc rfkill drm_dma_helper drm_kms_helper pwm_bcm2835 bcm2835_thermal bcm2835_rng rng_core i2c_bcm2835 drm fuse ip_tables x_tables ipv6 [ 825.613735] CPU: 1 PID: 116 Comm: kworker/1:2 Tainted: G W 6.1.0-rc6-01399-g941aae326315 #3 [ 825.613759] Hardware name: Raspberry Pi 3 Model B Rev 1.2 (DT) [ 825.613777] Workqueue: events output_poll_execute [drm_kms_helper] [ 825.614038] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 825.614063] pc : drm_modeset_drop_locks+0x60/0x68 [drm] [ 825.614603] lr : drm_helper_probe_detect+0x120/0x1b4 [drm_kms_helper] [ 825.614829] sp : ffff800008313bf0 [ 825.614844] x29: ffff800008313bf0 x28: ffffcd7778b8b000 x27: 0000000000000000 [ 825.614883] x26: 0000000000000001 x25: 0000000000000001 x24: ffff677cc35c2758 [ 825.614920] x23: ffffcd7707d01430 x22: ffffcd7707c3edc7 x21: 0000000000000001 [ 825.614958] x20: 0000000000000000 x19: ffff800008313c10 x18: 000000000000b6d3 [ 825.614995] x17: ffffcd777835e214 x16: ffffcd7777cef870 x15: fffff81000000000 [ 825.615033] x14: 0000000000000000 x13: 0000000000000099 x12: 0000000000000002 [ 825.615070] x11: 72917988020af800 x10: 72917988020af800 x9 : 72917988020af800 [ 825.615108] x8 : ffff677cc665e0a8 x7 : d00a8c180000110c x6 : ffffcd77774c0054 [ 825.615145] x5 : 0000000000000000 x4 : 0000000000000001 x3 : 0000000000000000 [ 825.615181] x2 : ffff677cc55e1880 x1 : ffffcd7777cef8ec x0 : ffff800008313c10 [ 825.615219] Call trace: [ 825.615232] drm_modeset_drop_locks+0x60/0x68 [drm] [ 825.615773] drm_helper_probe_detect+0x120/0x1b4 [drm_kms_helper] [ 825.616003] output_poll_execute+0xe4/0x224 [drm_kms_helper] [ 825.616233] process_one_work+0x2b4/0x618 [ 825.616264] worker_thread+0x24c/0x464 [ 825.616288] kthread+0xec/0x110 [ 825.616310] ret_from_fork+0x10/0x20 [ 825.616335] irq event stamp: 7634 [ 825.616349] hardirqs last enabled at (7633): [<ffffcd777831ee90>] _raw_spin_unlock_irq+0x3c/0x78 [ 825.616384] hardirqs last disabled at (7634): [<ffffcd7778315a78>] __schedule+0x134/0x9f0 [ 825.616411] softirqs last enabled at (7630): [<ffffcd7707aacea0>] local_bh_enable+0x4/0x30 [ipv6] [ 825.617019] softirqs last disabled at (7618): [<ffffcd7707aace70>] local_bh_disable+0x4/0x30 [ipv6] [ 825.617586] ---[ end trace 0000000000000000 ]--- Therefore, deal with the deadlock as suggested by [1], using the function drm_modeset_backoff(). [1] https://docs.kernel.org/gpu/drm-kms.html?highlight=kms#kms-locking
CVE-2025-39901 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: i40e: remove read access to debugfs files The 'command' and 'netdev_ops' debugfs files are a legacy debugging interface supported by the i40e driver since its early days by commit 02e9c290814c ("i40e: debugfs interface"). Both of these debugfs files provide a read handler which is mostly useless, and which is implemented with questionable logic. They both use a static 256 byte buffer which is initialized to the empty string. In the case of the 'command' file this buffer is literally never used and simply wastes space. In the case of the 'netdev_ops' file, the last command written is saved here. On read, the files contents are presented as the name of the device followed by a colon and then the contents of their respective static buffer. For 'command' this will always be "<device>: ". For 'netdev_ops', this will be "<device>: <last command written>". But note the buffer is shared between all devices operated by this module. At best, it is mostly meaningless information, and at worse it could be accessed simultaneously as there doesn't appear to be any locking mechanism. We have also recently received multiple reports for both read functions about their use of snprintf and potential overflow that could result in reading arbitrary kernel memory. For the 'command' file, this is definitely impossible, since the static buffer is always zero and never written to. For the 'netdev_ops' file, it does appear to be possible, if the user carefully crafts the command input, it will be copied into the buffer, which could be large enough to cause snprintf to truncate, which then causes the copy_to_user to read beyond the length of the buffer allocated by kzalloc. A minimal fix would be to replace snprintf() with scnprintf() which would cap the return to the number of bytes written, preventing an overflow. A more involved fix would be to drop the mostly useless static buffers, saving 512 bytes and modifying the read functions to stop needing those as input. Instead, lets just completely drop the read access to these files. These are debug interfaces exposed as part of debugfs, and I don't believe that dropping read access will break any script, as the provided output is pretty useless. You can find the netdev name through other more standard interfaces, and the 'netdev_ops' interface can easily result in garbage if you issue simultaneous writes to multiple devices at once. In order to properly remove the i40e_dbg_netdev_ops_buf, we need to refactor its write function to avoid using the static buffer. Instead, use the same logic as the i40e_dbg_command_write, with an allocated buffer. Update the code to use this instead of the static buffer, and ensure we free the buffer on exit. This fixes simultaneous writes to 'netdev_ops' on multiple devices, and allows us to remove the now unused static buffer along with removing the read access.
CVE-2025-39903 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: of_numa: fix uninitialized memory nodes causing kernel panic When there are memory-only nodes (nodes without CPUs), these nodes are not properly initialized, causing kernel panic during boot. of_numa_init of_numa_parse_cpu_nodes node_set(nid, numa_nodes_parsed); of_numa_parse_memory_nodes In of_numa_parse_cpu_nodes, numa_nodes_parsed gets updated only for nodes containing CPUs. Memory-only nodes should have been updated in of_numa_parse_memory_nodes, but they weren't. Subsequently, when free_area_init() attempts to access NODE_DATA() for these uninitialized memory nodes, the kernel panics due to NULL pointer dereference. This can be reproduced on ARM64 QEMU with 1 CPU and 2 memory nodes: qemu-system-aarch64 \ -cpu host -nographic \ -m 4G -smp 1 \ -machine virt,accel=kvm,gic-version=3,iommu=smmuv3 \ -object memory-backend-ram,size=2G,id=mem0 \ -object memory-backend-ram,size=2G,id=mem1 \ -numa node,nodeid=0,memdev=mem0 \ -numa node,nodeid=1,memdev=mem1 \ -kernel $IMAGE \ -hda $DISK \ -append "console=ttyAMA0 root=/dev/vda rw earlycon" [ 0.000000] Booting Linux on physical CPU 0x0000000000 [0x481fd010] [ 0.000000] Linux version 6.17.0-rc1-00001-gabb4b3daf18c-dirty (yintirui@local) (gcc (GCC) 12.3.1, GNU ld (GNU Binutils) 2.41) #52 SMP PREEMPT Mon Aug 18 09:49:40 CST 2025 [ 0.000000] KASLR enabled [ 0.000000] random: crng init done [ 0.000000] Machine model: linux,dummy-virt [ 0.000000] efi: UEFI not found. [ 0.000000] earlycon: pl11 at MMIO 0x0000000009000000 (options '') [ 0.000000] printk: legacy bootconsole [pl11] enabled [ 0.000000] OF: reserved mem: Reserved memory: No reserved-memory node in the DT [ 0.000000] NODE_DATA(0) allocated [mem 0xbfffd9c0-0xbfffffff] [ 0.000000] node 1 must be removed before remove section 23 [ 0.000000] Zone ranges: [ 0.000000] DMA [mem 0x0000000040000000-0x00000000ffffffff] [ 0.000000] DMA32 empty [ 0.000000] Normal [mem 0x0000000100000000-0x000000013fffffff] [ 0.000000] Movable zone start for each node [ 0.000000] Early memory node ranges [ 0.000000] node 0: [mem 0x0000000040000000-0x00000000bfffffff] [ 0.000000] node 1: [mem 0x00000000c0000000-0x000000013fffffff] [ 0.000000] Initmem setup node 0 [mem 0x0000000040000000-0x00000000bfffffff] [ 0.000000] Unable to handle kernel NULL pointer dereference at virtual address 00000000000000a0 [ 0.000000] Mem abort info: [ 0.000000] ESR = 0x0000000096000004 [ 0.000000] EC = 0x25: DABT (current EL), IL = 32 bits [ 0.000000] SET = 0, FnV = 0 [ 0.000000] EA = 0, S1PTW = 0 [ 0.000000] FSC = 0x04: level 0 translation fault [ 0.000000] Data abort info: [ 0.000000] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 [ 0.000000] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 0.000000] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 0.000000] [00000000000000a0] user address but active_mm is swapper [ 0.000000] Internal error: Oops: 0000000096000004 [#1] SMP [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 UID: 0 PID: 0 Comm: swapper Not tainted 6.17.0-rc1-00001-g760c6dabf762-dirty #54 PREEMPT [ 0.000000] Hardware name: linux,dummy-virt (DT) [ 0.000000] pstate: 800000c5 (Nzcv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.000000] pc : free_area_init+0x50c/0xf9c [ 0.000000] lr : free_area_init+0x5c0/0xf9c [ 0.000000] sp : ffffa02ca0f33c00 [ 0.000000] x29: ffffa02ca0f33cb0 x28: 0000000000000000 x27: 0000000000000000 [ 0.000000] x26: 4ec4ec4ec4ec4ec5 x25: 00000000000c0000 x24: 00000000000c0000 [ 0.000000] x23: 0000000000040000 x22: 0000000000000000 x21: ffffa02ca0f3b368 [ 0.000000] x20: ffffa02ca14c7b98 x19: 0000000000000000 x18: 0000000000000002 [ 0.000000] x17: 000000000000cacc x16: 0000000000000001 x15: 0000000000000001 [ 0.000000] x14: 0000000080000000 x13: 0000000000000018 x12: 0000000000000002 [ 0.0 ---truncated---
CVE-2022-50449 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: clk: samsung: Fix memory leak in _samsung_clk_register_pll() If clk_register() fails, @pll->rate_table may have allocated memory by kmemdup(), so it needs to be freed, otherwise will cause memory leak issue, this patch fixes it.
CVE-2022-50443 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/rockchip: lvds: fix PM usage counter unbalance in poweron pm_runtime_get_sync will increment pm usage counter even it failed. Forgetting to putting operation will result in reference leak here. We fix it by replacing it with the newest pm_runtime_resume_and_get to keep usage counter balanced.
CVE-2022-50420 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: hisilicon/hpre - fix resource leak in remove process In hpre_remove(), when the disable operation of qm sriov failed, the following logic should continue to be executed to release the remaining resources that have been allocated, instead of returning directly, otherwise there will be resource leakage.
CVE-2022-50458 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: clk: tegra: Fix refcount leak in tegra210_clock_init of_find_matching_node() returns a node pointer with refcount incremented, we should use of_node_put() on it when not need anymore. Add missing of_node_put() to avoid refcount leak.
CVE-2023-53450 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ext4: remove a BUG_ON in ext4_mb_release_group_pa() If a malicious fuzzer overwrites the ext4 superblock while it is mounted such that the s_first_data_block is set to a very large number, the calculation of the block group can underflow, and trigger a BUG_ON check. Change this to be an ext4_warning so that we don't crash the kernel.
CVE-2022-50467 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Fix null ndlp ptr dereference in abnormal exit path for GFT_ID An error case exit from lpfc_cmpl_ct_cmd_gft_id() results in a call to lpfc_nlp_put() with a null pointer to a nodelist structure. Changed lpfc_cmpl_ct_cmd_gft_id() to initialize nodelist pointer upon entry.
CVE-2025-39891 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mwifiex: Initialize the chan_stats array to zero The adapter->chan_stats[] array is initialized in mwifiex_init_channel_scan_gap() with vmalloc(), which doesn't zero out memory. The array is filled in mwifiex_update_chan_statistics() and then the user can query the data in mwifiex_cfg80211_dump_survey(). There are two potential issues here. What if the user calls mwifiex_cfg80211_dump_survey() before the data has been filled in. Also the mwifiex_update_chan_statistics() function doesn't necessarily initialize the whole array. Since the array was not initialized at the start that could result in an information leak. Also this array is pretty small. It's a maximum of 900 bytes so it's more appropriate to use kcalloc() instead vmalloc().