| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix double free of qgroup record after failure to add delayed ref head
In the previous code it was possible to incur into a double kfree()
scenario when calling add_delayed_ref_head(). This could happen if the
record was reported to already exist in the
btrfs_qgroup_trace_extent_nolock() call, but then there was an error
later on add_delayed_ref_head(). In this case, since
add_delayed_ref_head() returned an error, the caller went to free the
record. Since add_delayed_ref_head() couldn't set this kfree'd pointer
to NULL, then kfree() would have acted on a non-NULL 'record' object
which was pointing to memory already freed by the callee.
The problem comes from the fact that the responsibility to kfree the
object is on both the caller and the callee at the same time. Hence, the
fix for this is to shift the ownership of the 'qrecord' object out of
the add_delayed_ref_head(). That is, we will never attempt to kfree()
the given object inside of this function, and will expect the caller to
act on the 'qrecord' object on its own. The only exception where the
'qrecord' object cannot be kfree'd is if it was inserted into the
tracing logic, for which we already have the 'qrecord_inserted_ret'
boolean to account for this. Hence, the caller has to kfree the object
only if add_delayed_ref_head() reports not to have inserted it on the
tracing logic.
As a side-effect of the above, we must guarantee that
'qrecord_inserted_ret' is properly initialized at the start of the
function, not at the end, and then set when an actual insert
happens. This way we avoid 'qrecord_inserted_ret' having an invalid
value on an early exit.
The documentation from the add_delayed_ref_head() has also been updated
to reflect on the exact ownership of the 'qrecord' object. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix racy bitfield write in btrfs_clear_space_info_full()
From the memory-barriers.txt document regarding memory barrier ordering
guarantees:
(*) These guarantees do not apply to bitfields, because compilers often
generate code to modify these using non-atomic read-modify-write
sequences. Do not attempt to use bitfields to synchronize parallel
algorithms.
(*) Even in cases where bitfields are protected by locks, all fields
in a given bitfield must be protected by one lock. If two fields
in a given bitfield are protected by different locks, the compiler's
non-atomic read-modify-write sequences can cause an update to one
field to corrupt the value of an adjacent field.
btrfs_space_info has a bitfield sharing an underlying word consisting of
the fields full, chunk_alloc, and flush:
struct btrfs_space_info {
struct btrfs_fs_info * fs_info; /* 0 8 */
struct btrfs_space_info * parent; /* 8 8 */
...
int clamp; /* 172 4 */
unsigned int full:1; /* 176: 0 4 */
unsigned int chunk_alloc:1; /* 176: 1 4 */
unsigned int flush:1; /* 176: 2 4 */
...
Therefore, to be safe from parallel read-modify-writes losing a write to
one of the bitfield members protected by a lock, all writes to all the
bitfields must use the lock. They almost universally do, except for
btrfs_clear_space_info_full() which iterates over the space_infos and
writes out found->full = 0 without a lock.
Imagine that we have one thread completing a transaction in which we
finished deleting a block_group and are thus calling
btrfs_clear_space_info_full() while simultaneously the data reclaim
ticket infrastructure is running do_async_reclaim_data_space():
T1 T2
btrfs_commit_transaction
btrfs_clear_space_info_full
data_sinfo->full = 0
READ: full:0, chunk_alloc:0, flush:1
do_async_reclaim_data_space(data_sinfo)
spin_lock(&space_info->lock);
if(list_empty(tickets))
space_info->flush = 0;
READ: full: 0, chunk_alloc:0, flush:1
MOD/WRITE: full: 0, chunk_alloc:0, flush:0
spin_unlock(&space_info->lock);
return;
MOD/WRITE: full:0, chunk_alloc:0, flush:1
and now data_sinfo->flush is 1 but the reclaim worker has exited. This
breaks the invariant that flush is 0 iff there is no work queued or
running. Once this invariant is violated, future allocations that go
into __reserve_bytes() will add tickets to space_info->tickets but will
see space_info->flush is set to 1 and not queue the work. After this,
they will block forever on the resulting ticket, as it is now impossible
to kick the worker again.
I also confirmed by looking at the assembly of the affected kernel that
it is doing RMW operations. For example, to set the flush (3rd) bit to 0,
the assembly is:
andb $0xfb,0x60(%rbx)
and similarly for setting the full (1st) bit to 0:
andb $0xfe,-0x20(%rax)
So I think this is really a bug on practical systems. I have observed
a number of systems in this exact state, but am currently unable to
reproduce it.
Rather than leaving this footgun lying around for the future, take
advantage of the fact that there is room in the struct anyway, and that
it is already quite large and simply change the three bitfield members to
bools. This avoids writes to space_info->full having any effect on
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
iomap: allocate s_dio_done_wq for async reads as well
Since commit 222f2c7c6d14 ("iomap: always run error completions in user
context"), read error completions are deferred to s_dio_done_wq. This
means the workqueue also needs to be allocated for async reads. |
| In the Linux kernel, the following vulnerability has been resolved:
gfs2: Prevent recursive memory reclaim
Function new_inode() returns a new inode with inode->i_mapping->gfp_mask
set to GFP_HIGHUSER_MOVABLE. This value includes the __GFP_FS flag, so
allocations in that address space can recurse into filesystem memory
reclaim. We don't want that to happen because it can consume a
significant amount of stack memory.
Worse than that is that it can also deadlock: for example, in several
places, gfs2_unstuff_dinode() is called inside filesystem transactions.
This calls filemap_grab_folio(), which can allocate a new folio, which
can trigger memory reclaim. If memory reclaim recurses into the
filesystem and starts another transaction, a deadlock will ensue.
To fix these kinds of problems, prevent memory reclaim from recursing
into filesystem code by making sure that the gfp_mask of inode address
spaces doesn't include __GFP_FS.
The "meta" and resource group address spaces were already using GFP_NOFS
as their gfp_mask (which doesn't include __GFP_FS). The default value
of GFP_HIGHUSER_MOVABLE is less restrictive than GFP_NOFS, though. To
avoid being overly limiting, use the default value and only knock off
the __GFP_FS flag. I'm not sure if this will actually make a
difference, but it also shouldn't hurt.
This patch is loosely based on commit ad22c7a043c2 ("xfs: prevent stack
overflows from page cache allocation").
Fixes xfstest generic/273. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix exclusive map memory leak
When excl_prog_hash is 0 and excl_prog_hash_size is non-zero, the map also
needs to be freed. Otherwise, the map memory will not be reclaimed, just
like the memory leak problem reported by syzbot [1].
syzbot reported:
BUG: memory leak
backtrace (crc 7b9fb9b4):
map_create+0x322/0x11e0 kernel/bpf/syscall.c:1512
__sys_bpf+0x3556/0x3610 kernel/bpf/syscall.c:6131 |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: core: Protect regulator_supply_alias_list with regulator_list_mutex
regulator_supply_alias_list was accessed without any locking in
regulator_supply_alias(), regulator_register_supply_alias(), and
regulator_unregister_supply_alias(). Concurrent registration,
unregistration and lookups can race, leading to:
1 use-after-free if an alias entry is removed while being read,
2 duplicate entries when two threads register the same alias,
3 inconsistent alias mappings observed by consumers.
Protect all traversals, insertions and deletions on
regulator_supply_alias_list with the existing regulator_list_mutex. |
| In the Linux kernel, the following vulnerability has been resolved:
net: vxlan: prevent NULL deref in vxlan_xmit_one
Neither sock4 nor sock6 pointers are guaranteed to be non-NULL in
vxlan_xmit_one, e.g. if the iface is brought down. This can lead to the
following NULL dereference:
BUG: kernel NULL pointer dereference, address: 0000000000000010
Oops: Oops: 0000 [#1] SMP NOPTI
RIP: 0010:vxlan_xmit_one+0xbb3/0x1580
Call Trace:
vxlan_xmit+0x429/0x610
dev_hard_start_xmit+0x55/0xa0
__dev_queue_xmit+0x6d0/0x7f0
ip_finish_output2+0x24b/0x590
ip_output+0x63/0x110
Mentioned commits changed the code path in vxlan_xmit_one and as a side
effect the sock4/6 pointer validity checks in vxlan(6)_get_route were
lost. Fix this by adding back checks.
Since both commits being fixed were released in the same version (v6.7)
and are strongly related, bundle the fixes in a single commit. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: ch341: fix out-of-bounds memory access in ch341_transfer_one
Discovered by Atuin - Automated Vulnerability Discovery Engine.
The 'len' variable is calculated as 'min(32, trans->len + 1)',
which includes the 1-byte command header.
When copying data from 'trans->tx_buf' to 'ch341->tx_buf + 1', using 'len'
as the length is incorrect because:
1. It causes an out-of-bounds read from 'trans->tx_buf' (which has size
'trans->len', i.e., 'len - 1' in this context).
2. It can cause an out-of-bounds write to 'ch341->tx_buf' if 'len' is
CH341_PACKET_LENGTH (32). Writing 32 bytes to ch341->tx_buf + 1
overflows the buffer.
Fix this by copying 'len - 1' bytes. |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: fix refcount leak in exfat_find
Fix refcount leaks in `exfat_find` related to `exfat_get_dentry_set`.
Function `exfat_get_dentry_set` would increase the reference counter of
`es->bh` on success. Therefore, `exfat_put_dentry_set` must be called
after `exfat_get_dentry_set` to ensure refcount consistency. This patch
relocate two checks to avoid possible leaks. |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: fix divide-by-zero in exfat_allocate_bitmap
The variable max_ra_count can be 0 in exfat_allocate_bitmap(),
which causes a divide-by-zero error in the subsequent modulo operation
(i % max_ra_count), leading to a system crash.
When max_ra_count is 0, it means that readahead is not used. This patch
load the bitmap without readahead. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSv4/pNFS: Clear NFS_INO_LAYOUTCOMMIT in pnfs_mark_layout_stateid_invalid
Fixes a crash when layout is null during this call stack:
write_inode
-> nfs4_write_inode
-> pnfs_layoutcommit_inode
pnfs_set_layoutcommit relies on the lseg refcount to keep the layout
around. Need to clear NFS_INO_LAYOUTCOMMIT otherwise we might attempt
to reference a null layout. |
| In the Linux kernel, the following vulnerability has been resolved:
block: fix memory leak in __blkdev_issue_zero_pages
Move the fatal signal check before bio_alloc() to prevent a memory
leak when BLKDEV_ZERO_KILLABLE is set and a fatal signal is pending.
Previously, the bio was allocated before checking for a fatal signal.
If a signal was pending, the code would break out of the loop without
freeing or chaining the just-allocated bio, causing a memory leak.
This matches the pattern already used in __blkdev_issue_write_zeroes()
where the signal check precedes the allocation. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: firewire-motu: fix buffer overflow in hwdep read for DSP events
The DSP event handling code in hwdep_read() could write more bytes to
the user buffer than requested, when a user provides a buffer smaller
than the event header size (8 bytes).
Fix by using min_t() to clamp the copy size, This ensures we never copy
more than the user requested. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: dice: fix buffer overflow in detect_stream_formats()
The function detect_stream_formats() reads the stream_count value directly
from a FireWire device without validating it. This can lead to
out-of-bounds writes when a malicious device provides a stream_count value
greater than MAX_STREAMS.
Fix by applying the same validation to both TX and RX stream counts in
detect_stream_formats(). |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda: cs35l41: Fix NULL pointer dereference in cs35l41_hda_read_acpi()
The acpi_get_first_physical_node() function can return NULL, in which
case the get_device() function also returns NULL, but this value is
then dereferenced without checking,so add a check to prevent a crash.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: wavefront: Fix integer overflow in sample size validation
The wavefront_send_sample() function has an integer overflow issue
when validating sample size. The header->size field is u32 but gets
cast to int for comparison with dev->freemem
Fix by using unsigned comparison to avoid integer overflow. |
| Mattermost versions 10.11.x <= 10.11.5, 11.0.x <= 11.0.4, 10.12.x <= 10.12.2 fail to invalidate remote cluster invite tokens when using the legacy (version 1) protocol or when the confirming party does not provide a refreshed token, which allows an attacker who has obtained an invite token to authenticate as the remote cluster and perform limited actions on shared channels even after the invitation has been legitimately confirmed. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/64s: Fix VAS mm use after free
The refcount on mm is dropped before the coprocessor is detached. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: fix memory leak when removing provided buffers
When removing provided buffers, io_buffer structs are not being disposed
of, leading to a memory leak. They can't be freed individually, because
they are allocated in page-sized groups. They need to be added to some
free list instead, such as io_buffers_cache. All callers already hold
the lock protecting it, apart from when destroying buffers, so had to
extend the lock there. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: fix wrong fallback logic for FDIR
When adding a FDIR filter, if ice_vc_fdir_set_irq_ctx returns failure,
the inserted fdir entry will not be removed and if ice_vc_fdir_write_fltr
returns failure, the fdir context info for irq handler will not be cleared
which may lead to inconsistent or memory leak issue. This patch refines
failure cases to resolve this issue. |