| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
media: lgdt3306a: Add a check against null-pointer-def
The driver should check whether the client provides the platform_data.
The following log reveals it:
[ 29.610324] BUG: KASAN: null-ptr-deref in kmemdup+0x30/0x40
[ 29.610730] Read of size 40 at addr 0000000000000000 by task bash/414
[ 29.612820] Call Trace:
[ 29.613030] <TASK>
[ 29.613201] dump_stack_lvl+0x56/0x6f
[ 29.613496] ? kmemdup+0x30/0x40
[ 29.613754] print_report.cold+0x494/0x6b7
[ 29.614082] ? kmemdup+0x30/0x40
[ 29.614340] kasan_report+0x8a/0x190
[ 29.614628] ? kmemdup+0x30/0x40
[ 29.614888] kasan_check_range+0x14d/0x1d0
[ 29.615213] memcpy+0x20/0x60
[ 29.615454] kmemdup+0x30/0x40
[ 29.615700] lgdt3306a_probe+0x52/0x310
[ 29.616339] i2c_device_probe+0x951/0xa90 |
| In the Linux kernel, the following vulnerability has been resolved:
efi: runtime: avoid EFIv2 runtime services on Apple x86 machines
Aditya reports [0] that his recent MacbookPro crashes in the firmware
when using the variable services at runtime. The culprit appears to be a
call to QueryVariableInfo(), which we did not use to call on Apple x86
machines in the past as they only upgraded from EFI v1.10 to EFI v2.40
firmware fairly recently, and QueryVariableInfo() (along with
UpdateCapsule() et al) was added in EFI v2.00.
The only runtime service introduced in EFI v2.00 that we actually use in
Linux is QueryVariableInfo(), as the capsule based ones are optional,
generally not used at runtime (all the LVFS/fwupd firmware update
infrastructure uses helper EFI programs that invoke capsule update at
boot time, not runtime), and not implemented by Apple machines in the
first place. QueryVariableInfo() is used to 'safely' set variables,
i.e., only when there is enough space. This prevents machines with buggy
firmwares from corrupting their NVRAMs when they run out of space.
Given that Apple machines have been using EFI v1.10 services only for
the longest time (the EFI v2.0 spec was released in 2006, and Linux
support for the newly introduced runtime services was added in 2011, but
the MacbookPro12,1 released in 2015 still claims to be EFI v1.10 only),
let's avoid the EFI v2.0 ones on all Apple x86 machines.
[0] https://lore.kernel.org/all/6D757C75-65B1-468B-842D-10410081A8E4@live.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: LAPIC: Also cancel preemption timer during SET_LAPIC
The below warning is splatting during guest reboot.
------------[ cut here ]------------
WARNING: CPU: 0 PID: 1931 at arch/x86/kvm/x86.c:10322 kvm_arch_vcpu_ioctl_run+0x874/0x880 [kvm]
CPU: 0 PID: 1931 Comm: qemu-system-x86 Tainted: G I 5.17.0-rc1+ #5
RIP: 0010:kvm_arch_vcpu_ioctl_run+0x874/0x880 [kvm]
Call Trace:
<TASK>
kvm_vcpu_ioctl+0x279/0x710 [kvm]
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7fd39797350b
This can be triggered by not exposing tsc-deadline mode and doing a reboot in
the guest. The lapic_shutdown() function which is called in sys_reboot path
will not disarm the flying timer, it just masks LVTT. lapic_shutdown() clears
APIC state w/ LVT_MASKED and timer-mode bit is 0, this can trigger timer-mode
switch between tsc-deadline and oneshot/periodic, which can result in preemption
timer be cancelled in apic_update_lvtt(). However, We can't depend on this when
not exposing tsc-deadline mode and oneshot/periodic modes emulated by preemption
timer. Qemu will synchronise states around reset, let's cancel preemption timer
under KVM_SET_LAPIC. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Forcibly leave nested virt when SMM state is toggled
Forcibly leave nested virtualization operation if userspace toggles SMM
state via KVM_SET_VCPU_EVENTS or KVM_SYNC_X86_EVENTS. If userspace
forces the vCPU out of SMM while it's post-VMXON and then injects an SMI,
vmx_enter_smm() will overwrite vmx->nested.smm.vmxon and end up with both
vmxon=false and smm.vmxon=false, but all other nVMX state allocated.
Don't attempt to gracefully handle the transition as (a) most transitions
are nonsencial, e.g. forcing SMM while L2 is running, (b) there isn't
sufficient information to handle all transitions, e.g. SVM wants access
to the SMRAM save state, and (c) KVM_SET_VCPU_EVENTS must precede
KVM_SET_NESTED_STATE during state restore as the latter disallows putting
the vCPU into L2 if SMM is active, and disallows tagging the vCPU as
being post-VMXON in SMM if SMM is not active.
Abuse of KVM_SET_VCPU_EVENTS manifests as a WARN and memory leak in nVMX
due to failure to free vmcs01's shadow VMCS, but the bug goes far beyond
just a memory leak, e.g. toggling SMM on while L2 is active puts the vCPU
in an architecturally impossible state.
WARNING: CPU: 0 PID: 3606 at free_loaded_vmcs arch/x86/kvm/vmx/vmx.c:2665 [inline]
WARNING: CPU: 0 PID: 3606 at free_loaded_vmcs+0x158/0x1a0 arch/x86/kvm/vmx/vmx.c:2656
Modules linked in:
CPU: 1 PID: 3606 Comm: syz-executor725 Not tainted 5.17.0-rc1-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:free_loaded_vmcs arch/x86/kvm/vmx/vmx.c:2665 [inline]
RIP: 0010:free_loaded_vmcs+0x158/0x1a0 arch/x86/kvm/vmx/vmx.c:2656
Code: <0f> 0b eb b3 e8 8f 4d 9f 00 e9 f7 fe ff ff 48 89 df e8 92 4d 9f 00
Call Trace:
<TASK>
kvm_arch_vcpu_destroy+0x72/0x2f0 arch/x86/kvm/x86.c:11123
kvm_vcpu_destroy arch/x86/kvm/../../../virt/kvm/kvm_main.c:441 [inline]
kvm_destroy_vcpus+0x11f/0x290 arch/x86/kvm/../../../virt/kvm/kvm_main.c:460
kvm_free_vcpus arch/x86/kvm/x86.c:11564 [inline]
kvm_arch_destroy_vm+0x2e8/0x470 arch/x86/kvm/x86.c:11676
kvm_destroy_vm arch/x86/kvm/../../../virt/kvm/kvm_main.c:1217 [inline]
kvm_put_kvm+0x4fa/0xb00 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1250
kvm_vm_release+0x3f/0x50 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1273
__fput+0x286/0x9f0 fs/file_table.c:311
task_work_run+0xdd/0x1a0 kernel/task_work.c:164
exit_task_work include/linux/task_work.h:32 [inline]
do_exit+0xb29/0x2a30 kernel/exit.c:806
do_group_exit+0xd2/0x2f0 kernel/exit.c:935
get_signal+0x4b0/0x28c0 kernel/signal.c:2862
arch_do_signal_or_restart+0x2a9/0x1c40 arch/x86/kernel/signal.c:868
handle_signal_work kernel/entry/common.c:148 [inline]
exit_to_user_mode_loop kernel/entry/common.c:172 [inline]
exit_to_user_mode_prepare+0x17d/0x290 kernel/entry/common.c:207
__syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline]
syscall_exit_to_user_mode+0x19/0x60 kernel/entry/common.c:300
do_syscall_64+0x42/0xb0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
usb: xhci-plat: fix crash when suspend if remote wake enable
Crashed at i.mx8qm platform when suspend if enable remote wakeup
Internal error: synchronous external abort: 96000210 [#1] PREEMPT SMP
Modules linked in:
CPU: 2 PID: 244 Comm: kworker/u12:6 Not tainted 5.15.5-dirty #12
Hardware name: Freescale i.MX8QM MEK (DT)
Workqueue: events_unbound async_run_entry_fn
pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : xhci_disable_hub_port_wake.isra.62+0x60/0xf8
lr : xhci_disable_hub_port_wake.isra.62+0x34/0xf8
sp : ffff80001394bbf0
x29: ffff80001394bbf0 x28: 0000000000000000 x27: ffff00081193b578
x26: ffff00081193b570 x25: 0000000000000000 x24: 0000000000000000
x23: ffff00081193a29c x22: 0000000000020001 x21: 0000000000000001
x20: 0000000000000000 x19: ffff800014e90490 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
x14: 0000000000000000 x13: 0000000000000002 x12: 0000000000000000
x11: 0000000000000000 x10: 0000000000000960 x9 : ffff80001394baa0
x8 : ffff0008145d1780 x7 : ffff0008f95b8e80 x6 : 000000001853b453
x5 : 0000000000000496 x4 : 0000000000000000 x3 : ffff00081193a29c
x2 : 0000000000000001 x1 : 0000000000000000 x0 : ffff000814591620
Call trace:
xhci_disable_hub_port_wake.isra.62+0x60/0xf8
xhci_suspend+0x58/0x510
xhci_plat_suspend+0x50/0x78
platform_pm_suspend+0x2c/0x78
dpm_run_callback.isra.25+0x50/0xe8
__device_suspend+0x108/0x3c0
The basic flow:
1. run time suspend call xhci_suspend, xhci parent devices gate the clock.
2. echo mem >/sys/power/state, system _device_suspend call xhci_suspend
3. xhci_suspend call xhci_disable_hub_port_wake, which access register,
but clock already gated by run time suspend.
This problem was hidden by power domain driver, which call run time resume before it.
But the below commit remove it and make this issue happen.
commit c1df456d0f06e ("PM: domains: Don't runtime resume devices at genpd_prepare()")
This patch call run time resume before suspend to make sure clock is on
before access register.
Testeb-by: Abel Vesa <abel.vesa@nxp.com> |
| In the Linux kernel, the following vulnerability has been resolved:
USB: core: Fix hang in usb_kill_urb by adding memory barriers
The syzbot fuzzer has identified a bug in which processes hang waiting
for usb_kill_urb() to return. It turns out the issue is not unlinking
the URB; that works just fine. Rather, the problem arises when the
wakeup notification that the URB has completed is not received.
The reason is memory-access ordering on SMP systems. In outline form,
usb_kill_urb() and __usb_hcd_giveback_urb() operating concurrently on
different CPUs perform the following actions:
CPU 0 CPU 1
---------------------------- ---------------------------------
usb_kill_urb(): __usb_hcd_giveback_urb():
... ...
atomic_inc(&urb->reject); atomic_dec(&urb->use_count);
... ...
wait_event(usb_kill_urb_queue,
atomic_read(&urb->use_count) == 0);
if (atomic_read(&urb->reject))
wake_up(&usb_kill_urb_queue);
Confining your attention to urb->reject and urb->use_count, you can
see that the overall pattern of accesses on CPU 0 is:
write urb->reject, then read urb->use_count;
whereas the overall pattern of accesses on CPU 1 is:
write urb->use_count, then read urb->reject.
This pattern is referred to in memory-model circles as SB (for "Store
Buffering"), and it is well known that without suitable enforcement of
the desired order of accesses -- in the form of memory barriers -- it
is entirely possible for one or both CPUs to execute their reads ahead
of their writes. The end result will be that sometimes CPU 0 sees the
old un-decremented value of urb->use_count while CPU 1 sees the old
un-incremented value of urb->reject. Consequently CPU 0 ends up on
the wait queue and never gets woken up, leading to the observed hang
in usb_kill_urb().
The same pattern of accesses occurs in usb_poison_urb() and the
failure pathway of usb_hcd_submit_urb().
The problem is fixed by adding suitable memory barriers. To provide
proper memory-access ordering in the SB pattern, a full barrier is
required on both CPUs. The atomic_inc() and atomic_dec() accesses
themselves don't provide any memory ordering, but since they are
present, we can use the optimized smp_mb__after_atomic() memory
barrier in the various routines to obtain the desired effect.
This patch adds the necessary memory barriers. |
| In the Linux kernel, the following vulnerability has been resolved:
selinux: fix double free of cond_list on error paths
On error path from cond_read_list() and duplicate_policydb_cond_list()
the cond_list_destroy() gets called a second time in caller functions,
resulting in NULL pointer deref. Fix this by resetting the
cond_list_len to 0 in cond_list_destroy(), making subsequent calls a
noop.
Also consistently reset the cond_list pointer to NULL after freeing.
[PM: fix line lengths in the description] |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: ops: Reject out of bounds values in snd_soc_put_volsw()
We don't currently validate that the values being set are within the range
we advertised to userspace as being valid, do so and reject any values
that are out of range. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix deadlock between quota disable and qgroup rescan worker
Quota disable ioctl starts a transaction before waiting for the qgroup
rescan worker completes. However, this wait can be infinite and results
in deadlock because of circular dependency among the quota disable
ioctl, the qgroup rescan worker and the other task with transaction such
as block group relocation task.
The deadlock happens with the steps following:
1) Task A calls ioctl to disable quota. It starts a transaction and
waits for qgroup rescan worker completes.
2) Task B such as block group relocation task starts a transaction and
joins to the transaction that task A started. Then task B commits to
the transaction. In this commit, task B waits for a commit by task A.
3) Task C as the qgroup rescan worker starts its job and starts a
transaction. In this transaction start, task C waits for completion
of the transaction that task A started and task B committed.
This deadlock was found with fstests test case btrfs/115 and a zoned
null_blk device. The test case enables and disables quota, and the
block group reclaim was triggered during the quota disable by chance.
The deadlock was also observed by running quota enable and disable in
parallel with 'btrfs balance' command on regular null_blk devices.
An example report of the deadlock:
[372.469894] INFO: task kworker/u16:6:103 blocked for more than 122 seconds.
[372.479944] Not tainted 5.16.0-rc8 #7
[372.485067] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[372.493898] task:kworker/u16:6 state:D stack: 0 pid: 103 ppid: 2 flags:0x00004000
[372.503285] Workqueue: btrfs-qgroup-rescan btrfs_work_helper [btrfs]
[372.510782] Call Trace:
[372.514092] <TASK>
[372.521684] __schedule+0xb56/0x4850
[372.530104] ? io_schedule_timeout+0x190/0x190
[372.538842] ? lockdep_hardirqs_on+0x7e/0x100
[372.547092] ? _raw_spin_unlock_irqrestore+0x3e/0x60
[372.555591] schedule+0xe0/0x270
[372.561894] btrfs_commit_transaction+0x18bb/0x2610 [btrfs]
[372.570506] ? btrfs_apply_pending_changes+0x50/0x50 [btrfs]
[372.578875] ? free_unref_page+0x3f2/0x650
[372.585484] ? finish_wait+0x270/0x270
[372.591594] ? release_extent_buffer+0x224/0x420 [btrfs]
[372.599264] btrfs_qgroup_rescan_worker+0xc13/0x10c0 [btrfs]
[372.607157] ? lock_release+0x3a9/0x6d0
[372.613054] ? btrfs_qgroup_account_extent+0xda0/0xda0 [btrfs]
[372.620960] ? do_raw_spin_lock+0x11e/0x250
[372.627137] ? rwlock_bug.part.0+0x90/0x90
[372.633215] ? lock_is_held_type+0xe4/0x140
[372.639404] btrfs_work_helper+0x1ae/0xa90 [btrfs]
[372.646268] process_one_work+0x7e9/0x1320
[372.652321] ? lock_release+0x6d0/0x6d0
[372.658081] ? pwq_dec_nr_in_flight+0x230/0x230
[372.664513] ? rwlock_bug.part.0+0x90/0x90
[372.670529] worker_thread+0x59e/0xf90
[372.676172] ? process_one_work+0x1320/0x1320
[372.682440] kthread+0x3b9/0x490
[372.687550] ? _raw_spin_unlock_irq+0x24/0x50
[372.693811] ? set_kthread_struct+0x100/0x100
[372.700052] ret_from_fork+0x22/0x30
[372.705517] </TASK>
[372.709747] INFO: task btrfs-transacti:2347 blocked for more than 123 seconds.
[372.729827] Not tainted 5.16.0-rc8 #7
[372.745907] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[372.767106] task:btrfs-transacti state:D stack: 0 pid: 2347 ppid: 2 flags:0x00004000
[372.787776] Call Trace:
[372.801652] <TASK>
[372.812961] __schedule+0xb56/0x4850
[372.830011] ? io_schedule_timeout+0x190/0x190
[372.852547] ? lockdep_hardirqs_on+0x7e/0x100
[372.871761] ? _raw_spin_unlock_irqrestore+0x3e/0x60
[372.886792] schedule+0xe0/0x270
[372.901685] wait_current_trans+0x22c/0x310 [btrfs]
[372.919743] ? btrfs_put_transaction+0x3d0/0x3d0 [btrfs]
[372.938923] ? finish_wait+0x270/0x270
[372.959085] ? join_transaction+0xc7
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix use-after-free after failure to create a snapshot
At ioctl.c:create_snapshot(), we allocate a pending snapshot structure and
then attach it to the transaction's list of pending snapshots. After that
we call btrfs_commit_transaction(), and if that returns an error we jump
to 'fail' label, where we kfree() the pending snapshot structure. This can
result in a later use-after-free of the pending snapshot:
1) We allocated the pending snapshot and added it to the transaction's
list of pending snapshots;
2) We call btrfs_commit_transaction(), and it fails either at the first
call to btrfs_run_delayed_refs() or btrfs_start_dirty_block_groups().
In both cases, we don't abort the transaction and we release our
transaction handle. We jump to the 'fail' label and free the pending
snapshot structure. We return with the pending snapshot still in the
transaction's list;
3) Another task commits the transaction. This time there's no error at
all, and then during the transaction commit it accesses a pointer
to the pending snapshot structure that the snapshot creation task
has already freed, resulting in a user-after-free.
This issue could actually be detected by smatch, which produced the
following warning:
fs/btrfs/ioctl.c:843 create_snapshot() warn: '&pending_snapshot->list' not removed from list
So fix this by not having the snapshot creation ioctl directly add the
pending snapshot to the transaction's list. Instead add the pending
snapshot to the transaction handle, and then at btrfs_commit_transaction()
we add the snapshot to the list only when we can guarantee that any error
returned after that point will result in a transaction abort, in which
case the ioctl code can safely free the pending snapshot and no one can
access it anymore. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/kmemleak: avoid scanning potential huge holes
When using devm_request_free_mem_region() and devm_memremap_pages() to
add ZONE_DEVICE memory, if requested free mem region's end pfn were
huge(e.g., 0x400000000), the node_end_pfn() will be also huge (see
move_pfn_range_to_zone()). Thus it creates a huge hole between
node_start_pfn() and node_end_pfn().
We found on some AMD APUs, amdkfd requested such a free mem region and
created a huge hole. In such a case, following code snippet was just
doing busy test_bit() looping on the huge hole.
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
struct page *page = pfn_to_online_page(pfn);
if (!page)
continue;
...
}
So we got a soft lockup:
watchdog: BUG: soft lockup - CPU#6 stuck for 26s! [bash:1221]
CPU: 6 PID: 1221 Comm: bash Not tainted 5.15.0-custom #1
RIP: 0010:pfn_to_online_page+0x5/0xd0
Call Trace:
? kmemleak_scan+0x16a/0x440
kmemleak_write+0x306/0x3a0
? common_file_perm+0x72/0x170
full_proxy_write+0x5c/0x90
vfs_write+0xb9/0x260
ksys_write+0x67/0xe0
__x64_sys_write+0x1a/0x20
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
I did some tests with the patch.
(1) amdgpu module unloaded
before the patch:
real 0m0.976s
user 0m0.000s
sys 0m0.968s
after the patch:
real 0m0.981s
user 0m0.000s
sys 0m0.973s
(2) amdgpu module loaded
before the patch:
real 0m35.365s
user 0m0.000s
sys 0m35.354s
after the patch:
real 0m1.049s
user 0m0.000s
sys 0m1.042s |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix error handling in ext4_fc_record_modified_inode()
Current code does not fully takes care of krealloc() error case, which
could lead to silent memory corruption or a kernel bug. This patch
fixes that.
Also it cleans up some duplicated error handling logic from various
functions in fast_commit.c file. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: fix a possible null pointer dereference
In radeon_fp_native_mode(), the return value of drm_mode_duplicate()
is assigned to mode, which will lead to a NULL pointer dereference
on failure of drm_mode_duplicate(). Add a check to avoid npd.
The failure status of drm_cvt_mode() on the other path is checked too. |
| In the Linux kernel, the following vulnerability has been resolved:
vdpa: ifcvf: Do proper cleanup if IFCVF init fails
ifcvf_mgmt_dev leaks memory if it is not freed before
returning. Call is made to correct return statement
so memory does not leak. ifcvf_init_hw does not take
care of this so it is needed to do it here. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: add a force flush to delay work when radeon
Although radeon card fence and wait for gpu to finish processing current batch rings,
there is still a corner case that radeon lockup work queue may not be fully flushed,
and meanwhile the radeon_suspend_kms() function has called pci_set_power_state() to
put device in D3hot state.
Per PCI spec rev 4.0 on 5.3.1.4.1 D3hot State.
> Configuration and Message requests are the only TLPs accepted by a Function in
> the D3hot state. All other received Requests must be handled as Unsupported Requests,
> and all received Completions may optionally be handled as Unexpected Completions.
This issue will happen in following logs:
Unable to handle kernel paging request at virtual address 00008800e0008010
CPU 0 kworker/0:3(131): Oops 0
pc = [<ffffffff811bea5c>] ra = [<ffffffff81240844>] ps = 0000 Tainted: G W
pc is at si_gpu_check_soft_reset+0x3c/0x240
ra is at si_dma_is_lockup+0x34/0xd0
v0 = 0000000000000000 t0 = fff08800e0008010 t1 = 0000000000010000
t2 = 0000000000008010 t3 = fff00007e3c00000 t4 = fff00007e3c00258
t5 = 000000000000ffff t6 = 0000000000000001 t7 = fff00007ef078000
s0 = fff00007e3c016e8 s1 = fff00007e3c00000 s2 = fff00007e3c00018
s3 = fff00007e3c00000 s4 = fff00007fff59d80 s5 = 0000000000000000
s6 = fff00007ef07bd98
a0 = fff00007e3c00000 a1 = fff00007e3c016e8 a2 = 0000000000000008
a3 = 0000000000000001 a4 = 8f5c28f5c28f5c29 a5 = ffffffff810f4338
t8 = 0000000000000275 t9 = ffffffff809b66f8 t10 = ff6769c5d964b800
t11= 000000000000b886 pv = ffffffff811bea20 at = 0000000000000000
gp = ffffffff81d89690 sp = 00000000aa814126
Disabling lock debugging due to kernel taint
Trace:
[<ffffffff81240844>] si_dma_is_lockup+0x34/0xd0
[<ffffffff81119610>] radeon_fence_check_lockup+0xd0/0x290
[<ffffffff80977010>] process_one_work+0x280/0x550
[<ffffffff80977350>] worker_thread+0x70/0x7c0
[<ffffffff80977410>] worker_thread+0x130/0x7c0
[<ffffffff80982040>] kthread+0x200/0x210
[<ffffffff809772e0>] worker_thread+0x0/0x7c0
[<ffffffff80981f8c>] kthread+0x14c/0x210
[<ffffffff80911658>] ret_from_kernel_thread+0x18/0x20
[<ffffffff80981e40>] kthread+0x0/0x210
Code: ad3e0008 43f0074a ad7e0018 ad9e0020 8c3001e8 40230101
<88210000> 4821ed21
So force lockup work queue flush to fix this problem. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: emu10k1: Fix out of bounds access in snd_emu10k1_pcm_channel_alloc()
The voice allocator sometimes begins allocating from near the end of the
array and then wraps around, however snd_emu10k1_pcm_channel_alloc()
accesses the newly allocated voices as if it never wrapped around.
This results in out of bounds access if the first voice has a high enough
index so that first_voice + requested_voice_count > NUM_G (64).
The more voices are requested, the more likely it is for this to occur.
This was initially discovered using PipeWire, however it can be reproduced
by calling aplay multiple times with 16 channels:
aplay -r 48000 -D plughw:CARD=Live,DEV=3 -c 16 /dev/zero
UBSAN: array-index-out-of-bounds in sound/pci/emu10k1/emupcm.c:127:40
index 65 is out of range for type 'snd_emu10k1_voice [64]'
CPU: 1 PID: 31977 Comm: aplay Tainted: G W IOE 6.0.0-rc2-emu10k1+ #7
Hardware name: ASUSTEK COMPUTER INC P5W DH Deluxe/P5W DH Deluxe, BIOS 3002 07/22/2010
Call Trace:
<TASK>
dump_stack_lvl+0x49/0x63
dump_stack+0x10/0x16
ubsan_epilogue+0x9/0x3f
__ubsan_handle_out_of_bounds.cold+0x44/0x49
snd_emu10k1_playback_hw_params+0x3bc/0x420 [snd_emu10k1]
snd_pcm_hw_params+0x29f/0x600 [snd_pcm]
snd_pcm_common_ioctl+0x188/0x1410 [snd_pcm]
? exit_to_user_mode_prepare+0x35/0x170
? do_syscall_64+0x69/0x90
? syscall_exit_to_user_mode+0x26/0x50
? do_syscall_64+0x69/0x90
? exit_to_user_mode_prepare+0x35/0x170
snd_pcm_ioctl+0x27/0x40 [snd_pcm]
__x64_sys_ioctl+0x95/0xd0
do_syscall_64+0x5c/0x90
? do_syscall_64+0x69/0x90
? do_syscall_64+0x69/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Fix an out-of-bounds bug in __snd_usb_parse_audio_interface()
There may be a bad USB audio device with a USB ID of (0x04fa, 0x4201) and
the number of it's interfaces less than 4, an out-of-bounds read bug occurs
when parsing the interface descriptor for this device.
Fix this by checking the number of interfaces. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix bug in extents parsing when eh_entries == 0 and eh_depth > 0
When walking through an inode extents, the ext4_ext_binsearch_idx() function
assumes that the extent header has been previously validated. However, there
are no checks that verify that the number of entries (eh->eh_entries) is
non-zero when depth is > 0. And this will lead to problems because the
EXT_FIRST_INDEX() and EXT_LAST_INDEX() will return garbage and result in this:
[ 135.245946] ------------[ cut here ]------------
[ 135.247579] kernel BUG at fs/ext4/extents.c:2258!
[ 135.249045] invalid opcode: 0000 [#1] PREEMPT SMP
[ 135.250320] CPU: 2 PID: 238 Comm: tmp118 Not tainted 5.19.0-rc8+ #4
[ 135.252067] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b-rebuilt.opensuse.org 04/01/2014
[ 135.255065] RIP: 0010:ext4_ext_map_blocks+0xc20/0xcb0
[ 135.256475] Code:
[ 135.261433] RSP: 0018:ffffc900005939f8 EFLAGS: 00010246
[ 135.262847] RAX: 0000000000000024 RBX: ffffc90000593b70 RCX: 0000000000000023
[ 135.264765] RDX: ffff8880038e5f10 RSI: 0000000000000003 RDI: ffff8880046e922c
[ 135.266670] RBP: ffff8880046e9348 R08: 0000000000000001 R09: ffff888002ca580c
[ 135.268576] R10: 0000000000002602 R11: 0000000000000000 R12: 0000000000000024
[ 135.270477] R13: 0000000000000000 R14: 0000000000000024 R15: 0000000000000000
[ 135.272394] FS: 00007fdabdc56740(0000) GS:ffff88807dd00000(0000) knlGS:0000000000000000
[ 135.274510] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 135.276075] CR2: 00007ffc26bd4f00 CR3: 0000000006261004 CR4: 0000000000170ea0
[ 135.277952] Call Trace:
[ 135.278635] <TASK>
[ 135.279247] ? preempt_count_add+0x6d/0xa0
[ 135.280358] ? percpu_counter_add_batch+0x55/0xb0
[ 135.281612] ? _raw_read_unlock+0x18/0x30
[ 135.282704] ext4_map_blocks+0x294/0x5a0
[ 135.283745] ? xa_load+0x6f/0xa0
[ 135.284562] ext4_mpage_readpages+0x3d6/0x770
[ 135.285646] read_pages+0x67/0x1d0
[ 135.286492] ? folio_add_lru+0x51/0x80
[ 135.287441] page_cache_ra_unbounded+0x124/0x170
[ 135.288510] filemap_get_pages+0x23d/0x5a0
[ 135.289457] ? path_openat+0xa72/0xdd0
[ 135.290332] filemap_read+0xbf/0x300
[ 135.291158] ? _raw_spin_lock_irqsave+0x17/0x40
[ 135.292192] new_sync_read+0x103/0x170
[ 135.293014] vfs_read+0x15d/0x180
[ 135.293745] ksys_read+0xa1/0xe0
[ 135.294461] do_syscall_64+0x3c/0x80
[ 135.295284] entry_SYSCALL_64_after_hwframe+0x46/0xb0
This patch simply adds an extra check in __ext4_ext_check(), verifying that
eh_entries is not 0 when eh_depth is > 0. |
| In the Linux kernel, the following vulnerability has been resolved:
moxart: fix potential use-after-free on remove path
It was reported that the mmc host structure could be accessed after it
was freed in moxart_remove(), so fix this by saving the base register of
the device and using it instead of the pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: Fix WRITE_SAME No Data Buffer crash
In newer version of the SBC specs, we have a NDOB bit that indicates there
is no data buffer that gets written out. If this bit is set using commands
like "sg_write_same --ndob" we will crash in target_core_iblock/file's
execute_write_same handlers when we go to access the se_cmd->t_data_sg
because its NULL.
This patch adds a check for the NDOB bit in the common WRITE SAME code
because we don't support it. And, it adds a check for zero SG elements in
each handler in case the initiator tries to send a normal WRITE SAME with
no data buffer. |