| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
xsk: validate user input for XDP_{UMEM|COMPLETION}_FILL_RING
syzbot reported an illegal copy in xsk_setsockopt() [1]
Make sure to validate setsockopt() @optlen parameter.
[1]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset include/linux/sockptr.h:49 [inline]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr include/linux/sockptr.h:55 [inline]
BUG: KASAN: slab-out-of-bounds in xsk_setsockopt+0x909/0xa40 net/xdp/xsk.c:1420
Read of size 4 at addr ffff888028c6cde3 by task syz-executor.0/7549
CPU: 0 PID: 7549 Comm: syz-executor.0 Not tainted 6.8.0-syzkaller-08951-gfe46a7dd189e #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
copy_from_sockptr_offset include/linux/sockptr.h:49 [inline]
copy_from_sockptr include/linux/sockptr.h:55 [inline]
xsk_setsockopt+0x909/0xa40 net/xdp/xsk.c:1420
do_sock_setsockopt+0x3af/0x720 net/socket.c:2311
__sys_setsockopt+0x1ae/0x250 net/socket.c:2334
__do_sys_setsockopt net/socket.c:2343 [inline]
__se_sys_setsockopt net/socket.c:2340 [inline]
__x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x6d/0x75
RIP: 0033:0x7fb40587de69
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fb40665a0c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000036
RAX: ffffffffffffffda RBX: 00007fb4059abf80 RCX: 00007fb40587de69
RDX: 0000000000000005 RSI: 000000000000011b RDI: 0000000000000006
RBP: 00007fb4058ca47a R08: 0000000000000002 R09: 0000000000000000
R10: 0000000020001980 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007fb4059abf80 R15: 00007fff57ee4d08
</TASK>
Allocated by task 7549:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:370 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:387
kasan_kmalloc include/linux/kasan.h:211 [inline]
__do_kmalloc_node mm/slub.c:3966 [inline]
__kmalloc+0x233/0x4a0 mm/slub.c:3979
kmalloc include/linux/slab.h:632 [inline]
__cgroup_bpf_run_filter_setsockopt+0xd2f/0x1040 kernel/bpf/cgroup.c:1869
do_sock_setsockopt+0x6b4/0x720 net/socket.c:2293
__sys_setsockopt+0x1ae/0x250 net/socket.c:2334
__do_sys_setsockopt net/socket.c:2343 [inline]
__se_sys_setsockopt net/socket.c:2340 [inline]
__x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x6d/0x75
The buggy address belongs to the object at ffff888028c6cde0
which belongs to the cache kmalloc-8 of size 8
The buggy address is located 1 bytes to the right of
allocated 2-byte region [ffff888028c6cde0, ffff888028c6cde2)
The buggy address belongs to the physical page:
page:ffffea0000a31b00 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888028c6c9c0 pfn:0x28c6c
anon flags: 0xfff00000000800(slab|node=0|zone=1|lastcpupid=0x7ff)
page_type: 0xffffffff()
raw: 00fff00000000800 ffff888014c41280 0000000000000000 dead000000000001
raw: ffff888028c6c9c0 0000000080800057 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
page_owner tracks the page as allocated
page last allocated via order 0, migratetype Unmovable, gfp_mask 0x112cc0(GFP_USER|__GFP_NOWARN|__GFP_NORETRY), pid 6648, tgid 6644 (syz-executor.0), ts 133906047828, free_ts 133859922223
set_page_owner include/linux/page_owner.h:31 [inline]
post_alloc_hook+0x1ea/0x210 mm/page_alloc.c:1533
prep_new_page mm/page_alloc.c:
---truncated--- |
| An out-of-bounds write issue was addressed with improved input validation. This issue is fixed in iOS 16.7.9 and iPadOS 16.7.9, macOS Ventura 13.6.8, macOS Monterey 12.7.6, iOS 17.6 and iPadOS 17.6, macOS Sonoma 14.6. Processing a maliciously crafted video file may lead to unexpected app termination. |
| A heap-based buffer overflow vulnerability exists in the configuration file mib_init_value_array functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted .dat file can lead to arbitrary code execution. An attacker can upload a malicious file to trigger this vulnerability. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nftables: exthdr: fix 4-byte stack OOB write
If priv->len is a multiple of 4, then dst[len / 4] can write past
the destination array which leads to stack corruption.
This construct is necessary to clean the remainder of the register
in case ->len is NOT a multiple of the register size, so make it
conditional just like nft_payload.c does.
The bug was added in 4.1 cycle and then copied/inherited when
tcp/sctp and ip option support was added.
Bug reported by Zero Day Initiative project (ZDI-CAN-21950,
ZDI-CAN-21951, ZDI-CAN-21961). |
| A stack-based buffer overflow vulnerability exists in the boa getInfo functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted series of HTTP requests can lead to remote code execution. An attacker can send a series of HTTP requests to trigger this vulnerability. |
| Two stack-based buffer overflow vulnerabilities exist in the boa formIpQoS functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted series of HTTP requests can lead to remote code execution. An attacker can send a series of HTTP requests to trigger these vulnerabilities.This stack-based buffer overflow is related to the `entry_name` request's parameter. |
| Two stack-based buffer overflow vulnerabilities exist in the boa formIpQoS functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted series of HTTP requests can lead to remote code execution. An attacker can send a series of HTTP requests to trigger these vulnerabilities.This stack-based buffer overflow is related to the `comment` request's parameter. |
| Two stack-based buffer overflow vulnerabilities exist in the boa set_RadvdInterfaceParam functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted series of network requests can lead to remote code execution. An attacker can send a sequence of requests to trigger these vulnerabilities.This stack-based buffer overflow is related to the `AdvDefaultPreference` request's parameter. |
| Two stack-based buffer overflow vulnerabilities exist in the boa set_RadvdInterfaceParam functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted series of network requests can lead to remote code execution. An attacker can send a sequence of requests to trigger these vulnerabilities.This stack-based buffer overflow is related to the `interfacename` request's parameter. |
| A stack-based buffer overflow vulnerability exists in the boa formWsc functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted series of HTTP requests can lead to remote code execution. An attacker can send a series of HTTP requests to trigger this vulnerability. |
| A stack-based buffer overflow vulnerability exists in the boa rollback_control_code functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted series of network requests can lead to arbitrary code execution. An attacker can send a sequence of requests to trigger this vulnerability. |
| A stack-based buffer overflow vulnerability exists in the boa formFilter functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted series of HTTP requests can lead to arbitrary code execution. An attacker can send a sequence of requests to trigger this vulnerability. |
| A stack-based buffer overflow vulnerability exists in the boa formDnsv6 functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted series of network requests can lead to arbitrary code execution. An attacker can send a sequence of requests to trigger this vulnerability. |
| A stack-based buffer overflow vulnerability exists in the boa set_RadvdPrefixParam functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted series of network requests can lead to remote code execution. An attacker can send a sequence of requests to trigger this vulnerability. |
| A heap-based buffer overflow vulnerability exists in the comment functionality of stb _vorbis.c v1.22. A specially crafted .ogg file can lead to an out-of-bounds write. An attacker can provide a malicious file to trigger this vulnerability. |
| A stack-based buffer overflow vulnerability exists in the boa setRepeaterSsid functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted series of network requests can lead to arbitrary code execution. An attacker can send a sequence of requests to trigger this vulnerability. |
| A stack-based buffer overflow vulnerability exists in the boa formRoute functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted series of HTTP requests can lead to remote code execution. An attacker can send an HTTP request to trigger this vulnerability. |
| The JavaScript garbage collector could mis-color cross-compartment objects if OOM conditions were detected at the right point between two passes. This could have led to memory corruption. This vulnerability affects Firefox < 130, Firefox ESR < 128.2, Firefox ESR < 115.15, Thunderbird < 128.2, and Thunderbird < 115.15. |
| This issue was addressed with improved validation of symlinks. This issue is fixed in macOS Ventura 13.7, macOS Sonoma 14.7, macOS Sequoia 15. An app may be able to modify protected parts of the file system. |
| An out-of-bounds write issue was addressed with improved bounds checking. This issue is fixed in macOS Sonoma 14.7, macOS Sequoia 15. Processing a maliciously crafted video file may lead to unexpected app termination. |