Search

Search Results (324350 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-54019 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: sched/psi: use kernfs polling functions for PSI trigger polling Destroying psi trigger in cgroup_file_release causes UAF issues when a cgroup is removed from under a polling process. This is happening because cgroup removal causes a call to cgroup_file_release while the actual file is still alive. Destroying the trigger at this point would also destroy its waitqueue head and if there is still a polling process on that file accessing the waitqueue, it will step on the freed pointer: do_select vfs_poll do_rmdir cgroup_rmdir kernfs_drain_open_files cgroup_file_release cgroup_pressure_release psi_trigger_destroy wake_up_pollfree(&t->event_wait) // vfs_poll is unblocked synchronize_rcu kfree(t) poll_freewait -> UAF access to the trigger's waitqueue head Patch [1] fixed this issue for epoll() case using wake_up_pollfree(), however the same issue exists for synchronous poll() case. The root cause of this issue is that the lifecycles of the psi trigger's waitqueue and of the file associated with the trigger are different. Fix this by using kernfs_generic_poll function when polling on cgroup-specific psi triggers. It internally uses kernfs_open_node->poll waitqueue head with its lifecycle tied to the file's lifecycle. This also renders the fix in [1] obsolete, so revert it. [1] commit c2dbe32d5db5 ("sched/psi: Fix use-after-free in ep_remove_wait_queue()")
CVE-2023-54018 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/msm/hdmi: Add missing check for alloc_ordered_workqueue Add check for the return value of alloc_ordered_workqueue as it may return NULL pointer and cause NULL pointer dereference in `hdmi_hdcp.c` and `hdmi_hpd.c`. Patchwork: https://patchwork.freedesktop.org/patch/517211/
CVE-2023-54017 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: powerpc/pseries: fix possible memory leak in ibmebus_bus_init() If device_register() returns error in ibmebus_bus_init(), name of kobject which is allocated in dev_set_name() called in device_add() is leaked. As comment of device_add() says, it should call put_device() to drop the reference count that was set in device_initialize() when it fails, so the name can be freed in kobject_cleanup().
CVE-2023-54016 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: Fix memory leak in rx_desc and tx_desc Currently when ath12k_dp_cc_desc_init() is called we allocate memory to rx_descs and tx_descs. In ath12k_dp_cc_cleanup(), during descriptor cleanup rx_descs and tx_descs memory is not freed. This is cause of memory leak. These allocated memory should be freed in ath12k_dp_cc_cleanup. In ath12k_dp_cc_desc_init(), we can save base address of rx_descs and tx_descs. In ath12k_dp_cc_cleanup(), we can free rx_descs and tx_descs memory using their base address. Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.0.1-00029-QCAHKSWPL_SILICONZ-1
CVE-2023-54015 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Devcom, fix error flow in mlx5_devcom_register_device In case devcom allocation is failed, mlx5 is always freeing the priv. However, this priv might have been allocated by a different thread, and freeing it might lead to use-after-free bugs. Fix it by freeing the priv only in case it was allocated by the running thread.
CVE-2023-54014 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Check valid rport returned by fc_bsg_to_rport() Klocwork reported warning of rport maybe NULL and will be dereferenced. rport returned by call to fc_bsg_to_rport() could be NULL and dereferenced. Check valid rport returned by fc_bsg_to_rport().
CVE-2023-54013 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: interconnect: Fix locking for runpm vs reclaim For cases where icc_bw_set() can be called in callbaths that could deadlock against shrinker/reclaim, such as runpm resume, we need to decouple the icc locking. Introduce a new icc_bw_lock for cases where we need to serialize bw aggregation and update to decouple that from paths that require memory allocation such as node/link creation/ destruction. Fixes this lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 6.2.0-rc8-debug+ #554 Not tainted ------------------------------------------------------ ring0/132 is trying to acquire lock: ffffff80871916d0 (&gmu->lock){+.+.}-{3:3}, at: a6xx_pm_resume+0xf0/0x234 but task is already holding lock: ffffffdb5aee57e8 (dma_fence_map){++++}-{0:0}, at: msm_job_run+0x68/0x150 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (dma_fence_map){++++}-{0:0}: __dma_fence_might_wait+0x74/0xc0 dma_resv_lockdep+0x1f4/0x2f4 do_one_initcall+0x104/0x2bc kernel_init_freeable+0x344/0x34c kernel_init+0x30/0x134 ret_from_fork+0x10/0x20 -> #3 (mmu_notifier_invalidate_range_start){+.+.}-{0:0}: fs_reclaim_acquire+0x80/0xa8 slab_pre_alloc_hook.constprop.0+0x40/0x25c __kmem_cache_alloc_node+0x60/0x1cc __kmalloc+0xd8/0x100 topology_parse_cpu_capacity+0x8c/0x178 get_cpu_for_node+0x88/0xc4 parse_cluster+0x1b0/0x28c parse_cluster+0x8c/0x28c init_cpu_topology+0x168/0x188 smp_prepare_cpus+0x24/0xf8 kernel_init_freeable+0x18c/0x34c kernel_init+0x30/0x134 ret_from_fork+0x10/0x20 -> #2 (fs_reclaim){+.+.}-{0:0}: __fs_reclaim_acquire+0x3c/0x48 fs_reclaim_acquire+0x54/0xa8 slab_pre_alloc_hook.constprop.0+0x40/0x25c __kmem_cache_alloc_node+0x60/0x1cc __kmalloc+0xd8/0x100 kzalloc.constprop.0+0x14/0x20 icc_node_create_nolock+0x4c/0xc4 icc_node_create+0x38/0x58 qcom_icc_rpmh_probe+0x1b8/0x248 platform_probe+0x70/0xc4 really_probe+0x158/0x290 __driver_probe_device+0xc8/0xe0 driver_probe_device+0x44/0x100 __driver_attach+0xf8/0x108 bus_for_each_dev+0x78/0xc4 driver_attach+0x2c/0x38 bus_add_driver+0xd0/0x1d8 driver_register+0xbc/0xf8 __platform_driver_register+0x30/0x3c qnoc_driver_init+0x24/0x30 do_one_initcall+0x104/0x2bc kernel_init_freeable+0x344/0x34c kernel_init+0x30/0x134 ret_from_fork+0x10/0x20 -> #1 (icc_lock){+.+.}-{3:3}: __mutex_lock+0xcc/0x3c8 mutex_lock_nested+0x30/0x44 icc_set_bw+0x88/0x2b4 _set_opp_bw+0x8c/0xd8 _set_opp+0x19c/0x300 dev_pm_opp_set_opp+0x84/0x94 a6xx_gmu_resume+0x18c/0x804 a6xx_pm_resume+0xf8/0x234 adreno_runtime_resume+0x2c/0x38 pm_generic_runtime_resume+0x30/0x44 __rpm_callback+0x15c/0x174 rpm_callback+0x78/0x7c rpm_resume+0x318/0x524 __pm_runtime_resume+0x78/0xbc adreno_load_gpu+0xc4/0x17c msm_open+0x50/0x120 drm_file_alloc+0x17c/0x228 drm_open_helper+0x74/0x118 drm_open+0xa0/0x144 drm_stub_open+0xd4/0xe4 chrdev_open+0x1b8/0x1e4 do_dentry_open+0x2f8/0x38c vfs_open+0x34/0x40 path_openat+0x64c/0x7b4 do_filp_open+0x54/0xc4 do_sys_openat2+0x9c/0x100 do_sys_open+0x50/0x7c __arm64_sys_openat+0x28/0x34 invoke_syscall+0x8c/0x128 el0_svc_common.constprop.0+0xa0/0x11c do_el0_ ---truncated---
CVE-2023-54012 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: net: fix stack overflow when LRO is disabled for virtual interfaces When the virtual interface's feature is updated, it synchronizes the updated feature for its own lower interface. This propagation logic should be worked as the iteration, not recursively. But it works recursively due to the netdev notification unexpectedly. This problem occurs when it disables LRO only for the team and bonding interface type. team0 | +------+------+-----+-----+ | | | | | team1 team2 team3 ... team200 If team0's LRO feature is updated, it generates the NETDEV_FEAT_CHANGE event to its own lower interfaces(team1 ~ team200). It is worked by netdev_sync_lower_features(). So, the NETDEV_FEAT_CHANGE notification logic of each lower interface work iteratively. But generated NETDEV_FEAT_CHANGE event is also sent to the upper interface too. upper interface(team0) generates the NETDEV_FEAT_CHANGE event for its own lower interfaces again. lower and upper interfaces receive this event and generate this event again and again. So, the stack overflow occurs. But it is not the infinite loop issue. Because the netdev_sync_lower_features() updates features before generating the NETDEV_FEAT_CHANGE event. Already synchronized lower interfaces skip notification logic. So, it is just the problem that iteration logic is changed to the recursive unexpectedly due to the notification mechanism. Reproducer: ip link add team0 type team ethtool -K team0 lro on for i in {1..200} do ip link add team$i master team0 type team ethtool -K team$i lro on done ethtool -K team0 lro off In order to fix it, the notifier_ctx member of bonding/team is introduced.
CVE-2023-54011 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: scsi: mpi3mr: Fix an issue found by KASAN Write only correct size (32 instead of 64 bytes).
CVE-2023-54010 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: ACPICA: ACPICA: check null return of ACPI_ALLOCATE_ZEROED in acpi_db_display_objects ACPICA commit 0d5f467d6a0ba852ea3aad68663cbcbd43300fd4 ACPI_ALLOCATE_ZEROED may fails, object_info might be null and will cause null pointer dereference later.
CVE-2023-54009 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: i2c: cadence: cdns_i2c_master_xfer(): Fix runtime PM leak on error path The cdns_i2c_master_xfer() function gets a runtime PM reference when the function is entered. This reference is released when the function is exited. There is currently one error path where the function exits directly, which leads to a leak of the runtime PM reference. Make sure that this error path also releases the runtime PM reference.
CVE-2023-54008 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: virtio_vdpa: build affinity masks conditionally We try to build affinity mask via create_affinity_masks() unconditionally which may lead several issues: - the affinity mask is not used for parent without affinity support (only VDUSE support the affinity now) - the logic of create_affinity_masks() might not work for devices other than block. For example it's not rare in the networking device where the number of queues could exceed the number of CPUs. Such case breaks the current affinity logic which is based on group_cpus_evenly() who assumes the number of CPUs are not less than the number of groups. This can trigger a warning[1]: if (ret >= 0) WARN_ON(nr_present + nr_others < numgrps); Fixing this by only build the affinity masks only when - Driver passes affinity descriptor, driver like virtio-blk can make sure to limit the number of queues when it exceeds the number of CPUs - Parent support affinity setting config ops This help to avoid the warning. More optimizations could be done on top. [1] [ 682.146655] WARNING: CPU: 6 PID: 1550 at lib/group_cpus.c:400 group_cpus_evenly+0x1aa/0x1c0 [ 682.146668] CPU: 6 PID: 1550 Comm: vdpa Not tainted 6.5.0-rc5jason+ #79 [ 682.146671] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014 [ 682.146673] RIP: 0010:group_cpus_evenly+0x1aa/0x1c0 [ 682.146676] Code: 4c 89 e0 5b 5d 41 5c 41 5d 41 5e c3 cc cc cc cc e8 1b c4 74 ff 48 89 ef e8 13 ac 98 ff 4c 89 e7 45 31 e4 e8 08 ac 98 ff eb c2 <0f> 0b eb b6 e8 fd 05 c3 00 45 31 e4 eb e5 cc cc cc cc cc cc cc cc [ 682.146679] RSP: 0018:ffffc9000215f498 EFLAGS: 00010293 [ 682.146682] RAX: 000000000001f1e0 RBX: 0000000000000041 RCX: 0000000000000000 [ 682.146684] RDX: ffff888109922058 RSI: 0000000000000041 RDI: 0000000000000030 [ 682.146686] RBP: ffff888109922058 R08: ffffc9000215f498 R09: ffffc9000215f4a0 [ 682.146687] R10: 00000000000198d0 R11: 0000000000000030 R12: ffff888107e02800 [ 682.146689] R13: 0000000000000030 R14: 0000000000000030 R15: 0000000000000041 [ 682.146692] FS: 00007fef52315740(0000) GS:ffff888237380000(0000) knlGS:0000000000000000 [ 682.146695] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 682.146696] CR2: 00007fef52509000 CR3: 0000000110dbc004 CR4: 0000000000370ee0 [ 682.146698] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 682.146700] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 682.146701] Call Trace: [ 682.146703] <TASK> [ 682.146705] ? __warn+0x7b/0x130 [ 682.146709] ? group_cpus_evenly+0x1aa/0x1c0 [ 682.146712] ? report_bug+0x1c8/0x1e0 [ 682.146717] ? handle_bug+0x3c/0x70 [ 682.146721] ? exc_invalid_op+0x14/0x70 [ 682.146723] ? asm_exc_invalid_op+0x16/0x20 [ 682.146727] ? group_cpus_evenly+0x1aa/0x1c0 [ 682.146729] ? group_cpus_evenly+0x15c/0x1c0 [ 682.146731] create_affinity_masks+0xaf/0x1a0 [ 682.146735] virtio_vdpa_find_vqs+0x83/0x1d0 [ 682.146738] ? __pfx_default_calc_sets+0x10/0x10 [ 682.146742] virtnet_find_vqs+0x1f0/0x370 [ 682.146747] virtnet_probe+0x501/0xcd0 [ 682.146749] ? vp_modern_get_status+0x12/0x20 [ 682.146751] ? get_cap_addr.isra.0+0x10/0xc0 [ 682.146754] virtio_dev_probe+0x1af/0x260 [ 682.146759] really_probe+0x1a5/0x410
CVE-2023-54007 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: vmci_host: fix a race condition in vmci_host_poll() causing GPF During fuzzing, a general protection fault is observed in vmci_host_poll(). general protection fault, probably for non-canonical address 0xdffffc0000000019: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x00000000000000c8-0x00000000000000cf] RIP: 0010:__lock_acquire+0xf3/0x5e00 kernel/locking/lockdep.c:4926 <- omitting registers -> Call Trace: <TASK> lock_acquire+0x1a4/0x4a0 kernel/locking/lockdep.c:5672 __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline] _raw_spin_lock_irqsave+0xb3/0x100 kernel/locking/spinlock.c:162 add_wait_queue+0x3d/0x260 kernel/sched/wait.c:22 poll_wait include/linux/poll.h:49 [inline] vmci_host_poll+0xf8/0x2b0 drivers/misc/vmw_vmci/vmci_host.c:174 vfs_poll include/linux/poll.h:88 [inline] do_pollfd fs/select.c:873 [inline] do_poll fs/select.c:921 [inline] do_sys_poll+0xc7c/0x1aa0 fs/select.c:1015 __do_sys_ppoll fs/select.c:1121 [inline] __se_sys_ppoll+0x2cc/0x330 fs/select.c:1101 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x4e/0xa0 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Example thread interleaving that causes the general protection fault is as follows: CPU1 (vmci_host_poll) CPU2 (vmci_host_do_init_context) ----- ----- // Read uninitialized context context = vmci_host_dev->context; // Initialize context vmci_host_dev->context = vmci_ctx_create(); vmci_host_dev->ct_type = VMCIOBJ_CONTEXT; if (vmci_host_dev->ct_type == VMCIOBJ_CONTEXT) { // Dereferencing the wrong pointer poll_wait(..., &context->host_context); } In this scenario, vmci_host_poll() reads vmci_host_dev->context first, and then reads vmci_host_dev->ct_type to check that vmci_host_dev->context is initialized. However, since these two reads are not atomically executed, there is a chance of a race condition as described above. To fix this race condition, read vmci_host_dev->context after checking the value of vmci_host_dev->ct_type so that vmci_host_poll() always reads an initialized context.
CVE-2023-54006 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: af_unix: Fix data-race around unix_tot_inflight. unix_tot_inflight is changed under spin_lock(unix_gc_lock), but unix_release_sock() reads it locklessly. Let's use READ_ONCE() for unix_tot_inflight. Note that the writer side was marked by commit 9d6d7f1cb67c ("af_unix: annote lockless accesses to unix_tot_inflight & gc_in_progress") BUG: KCSAN: data-race in unix_inflight / unix_release_sock write (marked) to 0xffffffff871852b8 of 4 bytes by task 123 on cpu 1: unix_inflight+0x130/0x180 net/unix/scm.c:64 unix_attach_fds+0x137/0x1b0 net/unix/scm.c:123 unix_scm_to_skb net/unix/af_unix.c:1832 [inline] unix_dgram_sendmsg+0x46a/0x14f0 net/unix/af_unix.c:1955 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg+0x148/0x160 net/socket.c:747 ____sys_sendmsg+0x4e4/0x610 net/socket.c:2493 ___sys_sendmsg+0xc6/0x140 net/socket.c:2547 __sys_sendmsg+0x94/0x140 net/socket.c:2576 __do_sys_sendmsg net/socket.c:2585 [inline] __se_sys_sendmsg net/socket.c:2583 [inline] __x64_sys_sendmsg+0x45/0x50 net/socket.c:2583 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x72/0xdc read to 0xffffffff871852b8 of 4 bytes by task 4891 on cpu 0: unix_release_sock+0x608/0x910 net/unix/af_unix.c:671 unix_release+0x59/0x80 net/unix/af_unix.c:1058 __sock_release+0x7d/0x170 net/socket.c:653 sock_close+0x19/0x30 net/socket.c:1385 __fput+0x179/0x5e0 fs/file_table.c:321 ____fput+0x15/0x20 fs/file_table.c:349 task_work_run+0x116/0x1a0 kernel/task_work.c:179 resume_user_mode_work include/linux/resume_user_mode.h:49 [inline] exit_to_user_mode_loop kernel/entry/common.c:171 [inline] exit_to_user_mode_prepare+0x174/0x180 kernel/entry/common.c:204 __syscall_exit_to_user_mode_work kernel/entry/common.c:286 [inline] syscall_exit_to_user_mode+0x1a/0x30 kernel/entry/common.c:297 do_syscall_64+0x4b/0x90 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x72/0xdc value changed: 0x00000000 -> 0x00000001 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 4891 Comm: systemd-coredum Not tainted 6.4.0-rc5-01219-gfa0e21fa4443 #5 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
CVE-2023-54005 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: binder: fix memory leak in binder_init() In binder_init(), the destruction of binder_alloc_shrinker_init() is not performed in the wrong path, which will cause memory leaks. So this commit introduces binder_alloc_shrinker_exit() and calls it in the wrong path to fix that.
CVE-2023-54004 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: udplite: Fix NULL pointer dereference in __sk_mem_raise_allocated(). syzbot reported [0] a null-ptr-deref in sk_get_rmem0() while using IPPROTO_UDPLITE (0x88): 14:25:52 executing program 1: r0 = socket$inet6(0xa, 0x80002, 0x88) We had a similar report [1] for probably sk_memory_allocated_add() in __sk_mem_raise_allocated(), and commit c915fe13cbaa ("udplite: fix NULL pointer dereference") fixed it by setting .memory_allocated for udplite_prot and udplitev6_prot. To fix the variant, we need to set either .sysctl_wmem_offset or .sysctl_rmem. Now UDP and UDPLITE share the same value for .memory_allocated, so we use the same .sysctl_wmem_offset for UDP and UDPLITE. [0]: general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] CPU: 0 PID: 6829 Comm: syz-executor.1 Not tainted 6.4.0-rc2-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/28/2023 RIP: 0010:sk_get_rmem0 include/net/sock.h:2907 [inline] RIP: 0010:__sk_mem_raise_allocated+0x806/0x17a0 net/core/sock.c:3006 Code: c1 ea 03 80 3c 02 00 0f 85 23 0f 00 00 48 8b 44 24 08 48 8b 98 38 01 00 00 48 b8 00 00 00 00 00 fc ff df 48 89 da 48 c1 ea 03 <0f> b6 14 02 48 89 d8 83 e0 07 83 c0 03 38 d0 0f 8d 6f 0a 00 00 8b RSP: 0018:ffffc90005d7f450 EFLAGS: 00010246 RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffffc90004d92000 RDX: 0000000000000000 RSI: ffffffff88066482 RDI: ffffffff8e2ccbb8 RBP: ffff8880173f7000 R08: 0000000000000005 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000030000 R13: 0000000000000001 R14: 0000000000000340 R15: 0000000000000001 FS: 0000000000000000(0000) GS:ffff8880b9800000(0063) knlGS:00000000f7f1cb40 CS: 0010 DS: 002b ES: 002b CR0: 0000000080050033 CR2: 000000002e82f000 CR3: 0000000034ff0000 CR4: 00000000003506f0 Call Trace: <TASK> __sk_mem_schedule+0x6c/0xe0 net/core/sock.c:3077 udp_rmem_schedule net/ipv4/udp.c:1539 [inline] __udp_enqueue_schedule_skb+0x776/0xb30 net/ipv4/udp.c:1581 __udpv6_queue_rcv_skb net/ipv6/udp.c:666 [inline] udpv6_queue_rcv_one_skb+0xc39/0x16c0 net/ipv6/udp.c:775 udpv6_queue_rcv_skb+0x194/0xa10 net/ipv6/udp.c:793 __udp6_lib_mcast_deliver net/ipv6/udp.c:906 [inline] __udp6_lib_rcv+0x1bda/0x2bd0 net/ipv6/udp.c:1013 ip6_protocol_deliver_rcu+0x2e7/0x1250 net/ipv6/ip6_input.c:437 ip6_input_finish+0x150/0x2f0 net/ipv6/ip6_input.c:482 NF_HOOK include/linux/netfilter.h:303 [inline] NF_HOOK include/linux/netfilter.h:297 [inline] ip6_input+0xa0/0xd0 net/ipv6/ip6_input.c:491 ip6_mc_input+0x40b/0xf50 net/ipv6/ip6_input.c:585 dst_input include/net/dst.h:468 [inline] ip6_rcv_finish net/ipv6/ip6_input.c:79 [inline] NF_HOOK include/linux/netfilter.h:303 [inline] NF_HOOK include/linux/netfilter.h:297 [inline] ipv6_rcv+0x250/0x380 net/ipv6/ip6_input.c:309 __netif_receive_skb_one_core+0x114/0x180 net/core/dev.c:5491 __netif_receive_skb+0x1f/0x1c0 net/core/dev.c:5605 netif_receive_skb_internal net/core/dev.c:5691 [inline] netif_receive_skb+0x133/0x7a0 net/core/dev.c:5750 tun_rx_batched+0x4b3/0x7a0 drivers/net/tun.c:1553 tun_get_user+0x2452/0x39c0 drivers/net/tun.c:1989 tun_chr_write_iter+0xdf/0x200 drivers/net/tun.c:2035 call_write_iter include/linux/fs.h:1868 [inline] new_sync_write fs/read_write.c:491 [inline] vfs_write+0x945/0xd50 fs/read_write.c:584 ksys_write+0x12b/0x250 fs/read_write.c:637 do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline] __do_fast_syscall_32+0x65/0xf0 arch/x86/entry/common.c:178 do_fast_syscall_32+0x33/0x70 arch/x86/entry/common.c:203 entry_SYSENTER_compat_after_hwframe+0x70/0x82 RIP: 0023:0xf7f21579 Code: b8 01 10 06 03 74 b4 01 10 07 03 74 b0 01 10 08 03 74 d8 01 00 00 00 00 00 00 00 00 00 00 00 00 00 51 52 55 89 e5 0f 34 cd 80 <5d> 5a 59 c3 90 90 90 90 8d b4 26 00 00 00 00 8d b4 26 00 00 00 00 ---truncated---
CVE-2023-54003 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: RDMA/core: Fix GID entry ref leak when create_ah fails If AH create request fails, release sgid_attr to avoid GID entry referrence leak reported while releasing GID table
CVE-2023-54002 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix assertion of exclop condition when starting balance Balance as exclusive state is compatible with paused balance and device add, which makes some things more complicated. The assertion of valid states when starting from paused balance needs to take into account two more states, the combinations can be hit when there are several threads racing to start balance and device add. This won't typically happen when the commands are started from command line. Scenario 1: With exclusive_operation state == BTRFS_EXCLOP_NONE. Concurrently adding multiple devices to the same mount point and btrfs_exclop_finish executed finishes before assertion in btrfs_exclop_balance, exclusive_operation will changed to BTRFS_EXCLOP_NONE state which lead to assertion failed: fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD, in fs/btrfs/ioctl.c:456 Call Trace: <TASK> btrfs_exclop_balance+0x13c/0x310 ? memdup_user+0xab/0xc0 ? PTR_ERR+0x17/0x20 btrfs_ioctl_add_dev+0x2ee/0x320 btrfs_ioctl+0x9d5/0x10d0 ? btrfs_ioctl_encoded_write+0xb80/0xb80 __x64_sys_ioctl+0x197/0x210 do_syscall_64+0x3c/0xb0 entry_SYSCALL_64_after_hwframe+0x63/0xcd Scenario 2: With exclusive_operation state == BTRFS_EXCLOP_BALANCE_PAUSED. Concurrently adding multiple devices to the same mount point and btrfs_exclop_balance executed finish before the latter thread execute assertion in btrfs_exclop_balance, exclusive_operation will changed to BTRFS_EXCLOP_BALANCE_PAUSED state which lead to assertion failed: fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD || fs_info->exclusive_operation == BTRFS_EXCLOP_NONE, fs/btrfs/ioctl.c:458 Call Trace: <TASK> btrfs_exclop_balance+0x240/0x410 ? memdup_user+0xab/0xc0 ? PTR_ERR+0x17/0x20 btrfs_ioctl_add_dev+0x2ee/0x320 btrfs_ioctl+0x9d5/0x10d0 ? btrfs_ioctl_encoded_write+0xb80/0xb80 __x64_sys_ioctl+0x197/0x210 do_syscall_64+0x3c/0xb0 entry_SYSCALL_64_after_hwframe+0x63/0xcd An example of the failed assertion is below, which shows that the paused balance is also needed to be checked. root@syzkaller:/home/xsk# ./repro Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 Failed to add device /dev/vda, errno 14 [ 416.611428][ T7970] BTRFS info (device loop0): fs_info exclusive_operation: 0 Failed to add device /dev/vda, errno 14 [ 416.613973][ T7971] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.615456][ T7972] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.617528][ T7973] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.618359][ T7974] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.622589][ T7975] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.624034][ T7976] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.626420][ T7977] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.627643][ T7978] BTRFS info (device loop0): fs_info exclusive_operation: 3 Failed to add device /dev/vda, errno 14 [ 416.629006][ T7979] BTRFS info (device loop0): fs_info exclusive_operation: 3 [ 416.630298][ T7980] BTRFS info (device loop0): fs_info exclusive_operation: 3 Fai ---truncated---
CVE-2023-54001 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: staging: r8712: Fix memory leak in _r8712_init_xmit_priv() In the above mentioned routine, memory is allocated in several places. If the first succeeds and a later one fails, the routine will leak memory. This patch fixes commit 2865d42c78a9 ("staging: r8712u: Add the new driver to the mainline kernel"). A potential memory leak in r8712_xmit_resource_alloc() is also addressed.
CVE-2023-54000 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: net: hns3: fix deadlock issue when externel_lb and reset are executed together When externel_lb and reset are executed together, a deadlock may occur: [ 3147.217009] INFO: task kworker/u321:0:7 blocked for more than 120 seconds. [ 3147.230483] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 3147.238999] task:kworker/u321:0 state:D stack: 0 pid: 7 ppid: 2 flags:0x00000008 [ 3147.248045] Workqueue: hclge hclge_service_task [hclge] [ 3147.253957] Call trace: [ 3147.257093] __switch_to+0x7c/0xbc [ 3147.261183] __schedule+0x338/0x6f0 [ 3147.265357] schedule+0x50/0xe0 [ 3147.269185] schedule_preempt_disabled+0x18/0x24 [ 3147.274488] __mutex_lock.constprop.0+0x1d4/0x5dc [ 3147.279880] __mutex_lock_slowpath+0x1c/0x30 [ 3147.284839] mutex_lock+0x50/0x60 [ 3147.288841] rtnl_lock+0x20/0x2c [ 3147.292759] hclge_reset_prepare+0x68/0x90 [hclge] [ 3147.298239] hclge_reset_subtask+0x88/0xe0 [hclge] [ 3147.303718] hclge_reset_service_task+0x84/0x120 [hclge] [ 3147.309718] hclge_service_task+0x2c/0x70 [hclge] [ 3147.315109] process_one_work+0x1d0/0x490 [ 3147.319805] worker_thread+0x158/0x3d0 [ 3147.324240] kthread+0x108/0x13c [ 3147.328154] ret_from_fork+0x10/0x18 In externel_lb process, the hns3 driver call napi_disable() first, then the reset happen, then the restore process of the externel_lb will fail, and will not call napi_enable(). When doing externel_lb again, napi_disable() will be double call, cause a deadlock of rtnl_lock(). This patch use the HNS3_NIC_STATE_DOWN state to protect the calling of napi_disable() and napi_enable() in externel_lb process, just as the usage in ndo_stop() and ndo_start().