| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| libxml2 20904-GITv2.9.4-16-g0741801 is vulnerable to a stack-based buffer overflow. The function xmlSnprintfElementContent in valid.c is supposed to recursively dump the element content definition into a char buffer 'buf' of size 'size'. At the end of the routine, the function may strcat two more characters without checking whether the current strlen(buf) + 2 < size. This vulnerability causes programs that use libxml2, such as PHP, to crash. |
| In the Linux kernel, the following vulnerability has been resolved:
video: fbdev: nvidiafb: Use strscpy() to prevent buffer overflow
Coverity complains of a possible buffer overflow. However,
given the 'static' scope of nvidia_setup_i2c_bus() it looks
like that can't happen after examiniing the call sites.
CID 19036 (#1 of 1): Copy into fixed size buffer (STRING_OVERFLOW)
1. fixed_size_dest: You might overrun the 48-character fixed-size string
chan->adapter.name by copying name without checking the length.
2. parameter_as_source: Note: This defect has an elevated risk because the
source argument is a parameter of the current function.
89 strcpy(chan->adapter.name, name);
Fix this warning by using strscpy() which will silence the warning and
prevent any future buffer overflows should the names used to identify the
channel become much longer. |
| In the Linux kernel, the following vulnerability has been resolved:
dm btree remove: fix use after free in rebalance_children()
Move dm_tm_unlock() after dm_tm_dec(). |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: scsi_debug: Sanity check block descriptor length in resp_mode_select()
In resp_mode_select() sanity check the block descriptor len to avoid UAF.
BUG: KASAN: use-after-free in resp_mode_select+0xa4c/0xb40 drivers/scsi/scsi_debug.c:2509
Read of size 1 at addr ffff888026670f50 by task scsicmd/15032
CPU: 1 PID: 15032 Comm: scsicmd Not tainted 5.15.0-01d0625 #15
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
Call Trace:
<TASK>
dump_stack_lvl+0x89/0xb5 lib/dump_stack.c:107
print_address_description.constprop.9+0x28/0x160 mm/kasan/report.c:257
kasan_report.cold.14+0x7d/0x117 mm/kasan/report.c:443
__asan_report_load1_noabort+0x14/0x20 mm/kasan/report_generic.c:306
resp_mode_select+0xa4c/0xb40 drivers/scsi/scsi_debug.c:2509
schedule_resp+0x4af/0x1a10 drivers/scsi/scsi_debug.c:5483
scsi_debug_queuecommand+0x8c9/0x1e70 drivers/scsi/scsi_debug.c:7537
scsi_queue_rq+0x16b4/0x2d10 drivers/scsi/scsi_lib.c:1521
blk_mq_dispatch_rq_list+0xb9b/0x2700 block/blk-mq.c:1640
__blk_mq_sched_dispatch_requests+0x28f/0x590 block/blk-mq-sched.c:325
blk_mq_sched_dispatch_requests+0x105/0x190 block/blk-mq-sched.c:358
__blk_mq_run_hw_queue+0xe5/0x150 block/blk-mq.c:1762
__blk_mq_delay_run_hw_queue+0x4f8/0x5c0 block/blk-mq.c:1839
blk_mq_run_hw_queue+0x18d/0x350 block/blk-mq.c:1891
blk_mq_sched_insert_request+0x3db/0x4e0 block/blk-mq-sched.c:474
blk_execute_rq_nowait+0x16b/0x1c0 block/blk-exec.c:63
sg_common_write.isra.18+0xeb3/0x2000 drivers/scsi/sg.c:837
sg_new_write.isra.19+0x570/0x8c0 drivers/scsi/sg.c:775
sg_ioctl_common+0x14d6/0x2710 drivers/scsi/sg.c:941
sg_ioctl+0xa2/0x180 drivers/scsi/sg.c:1166
__x64_sys_ioctl+0x19d/0x220 fs/ioctl.c:52
do_syscall_64+0x3a/0x80 arch/x86/entry/common.c:50
entry_SYSCALL_64_after_hwframe+0x44/0xae arch/x86/entry/entry_64.S:113 |
| procps-ng before version 3.3.15 is vulnerable to multiple integer overflows leading to a heap corruption in file2strvec function. This allows a privilege escalation for a local attacker who can create entries in procfs by starting processes, which could result in crashes or arbitrary code execution in proc utilities run by other users. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: mount fails with buffer overflow in strlen
Starting with kernel 5.11 built with CONFIG_FORTIFY_SOURCE mouting an
ocfs2 filesystem with either o2cb or pcmk cluster stack fails with the
trace below. Problem seems to be that strings for cluster stack and
cluster name are not guaranteed to be null terminated in the disk
representation, while strlcpy assumes that the source string is always
null terminated. This causes a read outside of the source string
triggering the buffer overflow detection.
detected buffer overflow in strlen
------------[ cut here ]------------
kernel BUG at lib/string.c:1149!
invalid opcode: 0000 [#1] SMP PTI
CPU: 1 PID: 910 Comm: mount.ocfs2 Not tainted 5.14.0-1-amd64 #1
Debian 5.14.6-2
RIP: 0010:fortify_panic+0xf/0x11
...
Call Trace:
ocfs2_initialize_super.isra.0.cold+0xc/0x18 [ocfs2]
ocfs2_fill_super+0x359/0x19b0 [ocfs2]
mount_bdev+0x185/0x1b0
legacy_get_tree+0x27/0x40
vfs_get_tree+0x25/0xb0
path_mount+0x454/0xa20
__x64_sys_mount+0x103/0x140
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae |
| In the Linux kernel, the following vulnerability has been resolved:
HID: betop: fix slab-out-of-bounds Write in betop_probe
Syzbot reported slab-out-of-bounds Write bug in hid-betopff driver.
The problem is the driver assumes the device must have an input report but
some malicious devices violate this assumption.
So this patch checks hid_device's input is non empty before it's been used. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: Fix out-of-bound vmalloc access in imageblit
This issue happens when a userspace program does an ioctl
FBIOPUT_VSCREENINFO passing the fb_var_screeninfo struct
containing only the fields xres, yres, and bits_per_pixel
with values.
If this struct is the same as the previous ioctl, the
vc_resize() detects it and doesn't call the resize_screen(),
leaving the fb_var_screeninfo incomplete. And this leads to
the updatescrollmode() calculates a wrong value to
fbcon_display->vrows, which makes the real_y() return a
wrong value of y, and that value, eventually, causes
the imageblit to access an out-of-bound address value.
To solve this issue I made the resize_screen() be called
even if the screen does not need any resizing, so it will
"fix and fill" the fb_var_screeninfo independently. |
| In the Linux kernel, the following vulnerability has been resolved:
atm: iphase: fix possible use-after-free in ia_module_exit()
This module's remove path calls del_timer(). However, that function
does not wait until the timer handler finishes. This means that the
timer handler may still be running after the driver's remove function
has finished, which would result in a use-after-free.
Fix by calling del_timer_sync(), which makes sure the timer handler
has finished, and unable to re-schedule itself. |
| In the Linux kernel, the following vulnerability has been resolved:
mISDN: fix possible use-after-free in HFC_cleanup()
This module's remove path calls del_timer(). However, that function
does not wait until the timer handler finishes. This means that the
timer handler may still be running after the driver's remove function
has finished, which would result in a use-after-free.
Fix by calling del_timer_sync(), which makes sure the timer handler
has finished, and unable to re-schedule itself. |
| In the Linux kernel, the following vulnerability has been resolved:
atm: nicstar: Fix possible use-after-free in nicstar_cleanup()
This module's remove path calls del_timer(). However, that function
does not wait until the timer handler finishes. This means that the
timer handler may still be running after the driver's remove function
has finished, which would result in a use-after-free.
Fix by calling del_timer_sync(), which makes sure the timer handler
has finished, and unable to re-schedule itself. |
| In the Linux kernel, the following vulnerability has been resolved:
virtio-net: Add validation for used length
This adds validation for used length (might come
from an untrusted device) to avoid data corruption
or loss. |
| In the Linux kernel, the following vulnerability has been resolved:
wl1251: Fix possible buffer overflow in wl1251_cmd_scan
Function wl1251_cmd_scan calls memcpy without checking the length.
Harden by checking the length is within the maximum allowed size. |
| In the Linux kernel, the following vulnerability has been resolved:
smackfs: restrict bytes count in smk_set_cipso()
Oops, I failed to update subject line.
From 07571157c91b98ce1a4aa70967531e64b78e8346 Mon Sep 17 00:00:00 2001
Date: Mon, 12 Apr 2021 22:25:06 +0900
Subject: [PATCH] smackfs: restrict bytes count in smk_set_cipso()
Commit 7ef4c19d245f3dc2 ("smackfs: restrict bytes count in smackfs write
functions") missed that count > SMK_CIPSOMAX check applies to only
format == SMK_FIXED24_FMT case. |
| In the Linux kernel, the following vulnerability has been resolved:
misc/libmasm/module: Fix two use after free in ibmasm_init_one
In ibmasm_init_one, it calls ibmasm_init_remote_input_dev().
Inside ibmasm_init_remote_input_dev, mouse_dev and keybd_dev are
allocated by input_allocate_device(), and assigned to
sp->remote.mouse_dev and sp->remote.keybd_dev respectively.
In the err_free_devices error branch of ibmasm_init_one,
mouse_dev and keybd_dev are freed by input_free_device(), and return
error. Then the execution runs into error_send_message error branch
of ibmasm_init_one, where ibmasm_free_remote_input_dev(sp) is called
to unregister the freed sp->remote.mouse_dev and sp->remote.keybd_dev.
My patch add a "error_init_remote" label to handle the error of
ibmasm_init_remote_input_dev(), to avoid the uaf bugs. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: iscsi: Fix conn use after free during resets
If we haven't done a unbind target call we can race where
iscsi_conn_teardown wakes up the EH thread and then frees the conn while
those threads are still accessing the conn ehwait.
We can only do one TMF per session so this just moves the TMF fields from
the conn to the session. We can then rely on the
iscsi_session_teardown->iscsi_remove_session->__iscsi_unbind_session call
to remove the target and it's devices, and know after that point there is
no device or scsi-ml callout trying to access the session. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/arm-smmu: Fix arm_smmu_device refcount leak when arm_smmu_rpm_get fails
arm_smmu_rpm_get() invokes pm_runtime_get_sync(), which increases the
refcount of the "smmu" even though the return value is less than 0.
The reference counting issue happens in some error handling paths of
arm_smmu_rpm_get() in its caller functions. When arm_smmu_rpm_get()
fails, the caller functions forget to decrease the refcount of "smmu"
increased by arm_smmu_rpm_get(), causing a refcount leak.
Fix this issue by calling pm_runtime_resume_and_get() instead of
pm_runtime_get_sync() in arm_smmu_rpm_get(), which can keep the refcount
balanced in case of failure. |
| In the Linux kernel, the following vulnerability has been resolved:
watchdog: Fix possible use-after-free in wdt_startup()
This module's remove path calls del_timer(). However, that function
does not wait until the timer handler finishes. This means that the
timer handler may still be running after the driver's remove function
has finished, which would result in a use-after-free.
Fix by calling del_timer_sync(), which makes sure the timer handler
has finished, and unable to re-schedule itself. |
| In the Linux kernel, the following vulnerability has been resolved:
watchdog: sc520_wdt: Fix possible use-after-free in wdt_turnoff()
This module's remove path calls del_timer(). However, that function
does not wait until the timer handler finishes. This means that the
timer handler may still be running after the driver's remove function
has finished, which would result in a use-after-free.
Fix by calling del_timer_sync(), which makes sure the timer handler
has finished, and unable to re-schedule itself. |
| In the Linux kernel, the following vulnerability has been resolved:
watchdog: Fix possible use-after-free by calling del_timer_sync()
This driver's remove path calls del_timer(). However, that function
does not wait until the timer handler finishes. This means that the
timer handler may still be running after the driver's remove function
has finished, which would result in a use-after-free.
Fix by calling del_timer_sync(), which makes sure the timer handler
has finished, and unable to re-schedule itself. |