Search Results (14296 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-39905 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: phylink: add lock for serializing concurrent pl->phydev writes with resolver Currently phylink_resolve() protects itself against concurrent phylink_bringup_phy() or phylink_disconnect_phy() calls which modify pl->phydev by relying on pl->state_mutex. The problem is that in phylink_resolve(), pl->state_mutex is in a lock inversion state with pl->phydev->lock. So pl->phydev->lock needs to be acquired prior to pl->state_mutex. But that requires dereferencing pl->phydev in the first place, and without pl->state_mutex, that is racy. Hence the reason for the extra lock. Currently it is redundant, but it will serve a functional purpose once mutex_lock(&phy->lock) will be moved outside of the mutex_lock(&pl->state_mutex) section. Another alternative considered would have been to let phylink_resolve() acquire the rtnl_mutex, which is also held when phylink_bringup_phy() and phylink_disconnect_phy() are called. But since phylink_disconnect_phy() runs under rtnl_lock(), it would deadlock with phylink_resolve() when calling flush_work(&pl->resolve). Additionally, it would have been undesirable because it would have unnecessarily blocked many other call paths as well in the entire kernel, so the smaller-scoped lock was preferred.
CVE-2025-39891 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mwifiex: Initialize the chan_stats array to zero The adapter->chan_stats[] array is initialized in mwifiex_init_channel_scan_gap() with vmalloc(), which doesn't zero out memory. The array is filled in mwifiex_update_chan_statistics() and then the user can query the data in mwifiex_cfg80211_dump_survey(). There are two potential issues here. What if the user calls mwifiex_cfg80211_dump_survey() before the data has been filled in. Also the mwifiex_update_chan_statistics() function doesn't necessarily initialize the whole array. Since the array was not initialized at the start that could result in an information leak. Also this array is pretty small. It's a maximum of 900 bytes so it's more appropriate to use kcalloc() instead vmalloc().
CVE-2022-50427 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: ac97: fix possible memory leak in snd_ac97_dev_register() If device_register() fails in snd_ac97_dev_register(), it should call put_device() to give up reference, or the name allocated in dev_set_name() is leaked.
CVE-2025-39909 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/damon/lru_sort: avoid divide-by-zero in damon_lru_sort_apply_parameters() Patch series "mm/damon: avoid divide-by-zero in DAMON module's parameters application". DAMON's RECLAIM and LRU_SORT modules perform no validation on user-configured parameters during application, which may lead to division-by-zero errors. Avoid the divide-by-zero by adding validation checks when DAMON modules attempt to apply the parameters. This patch (of 2): During the calculation of 'hot_thres' and 'cold_thres', either 'sample_interval' or 'aggr_interval' is used as the divisor, which may lead to division-by-zero errors. Fix it by directly returning -EINVAL when such a case occurs. Additionally, since 'aggr_interval' is already required to be set no smaller than 'sample_interval' in damon_set_attrs(), only the case where 'sample_interval' is zero needs to be checked.
CVE-2022-50468 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: platform/chrome: cros_usbpd_notify: Fix error handling in cros_usbpd_notify_init() The following WARNING message was given when rmmod cros_usbpd_notify: Unexpected driver unregister! WARNING: CPU: 0 PID: 253 at drivers/base/driver.c:270 driver_unregister+0x8a/0xb0 Modules linked in: cros_usbpd_notify(-) CPU: 0 PID: 253 Comm: rmmod Not tainted 6.1.0-rc3 #24 ... Call Trace: <TASK> cros_usbpd_notify_exit+0x11/0x1e [cros_usbpd_notify] __x64_sys_delete_module+0x3c7/0x570 ? __ia32_sys_delete_module+0x570/0x570 ? lock_is_held_type+0xe3/0x140 ? syscall_enter_from_user_mode+0x17/0x50 ? rcu_read_lock_sched_held+0xa0/0xd0 ? syscall_enter_from_user_mode+0x1c/0x50 do_syscall_64+0x37/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f333fe9b1b7 The reason is that the cros_usbpd_notify_init() does not check the return value of platform_driver_register(), and the cros_usbpd_notify can install successfully even if platform_driver_register() failed. Fix by checking the return value of platform_driver_register() and unregister cros_usbpd_notify_plat_driver when it failed.
CVE-2023-53452 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: fix potential race condition between napi_init and napi_enable A race condition can happen if netdev is registered, but NAPI isn't initialized yet, and meanwhile user space starts the netdev that will enable NAPI. Then, it hits BUG_ON(): kernel BUG at net/core/dev.c:6423! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 0 PID: 417 Comm: iwd Not tainted 6.2.7-slab-dirty #3 eb0f5a8a9d91 Hardware name: LENOVO 21DL/LNVNB161216, BIOS JPCN20WW(V1.06) 09/20/2022 RIP: 0010:napi_enable+0x3f/0x50 Code: 48 89 c2 48 83 e2 f6 f6 81 89 08 00 00 02 74 0d 48 83 ... RSP: 0018:ffffada1414f3548 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffffa01425802080 RCX: 0000000000000000 RDX: 00000000000002ff RSI: ffffada14e50c614 RDI: ffffa01425808dc0 RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000100 R12: ffffa01425808f58 R13: 0000000000000000 R14: ffffa01423498940 R15: 0000000000000001 FS: 00007f5577c0a740(0000) GS:ffffa0169fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f5577a19972 CR3: 0000000125a7a000 CR4: 0000000000750ef0 PKRU: 55555554 Call Trace: <TASK> rtw89_pci_ops_start+0x1c/0x70 [rtw89_pci 6cbc75429515c181cbc386478d5cfb32ffc5a0f8] rtw89_core_start+0xbe/0x160 [rtw89_core fe07ecb874820b6d778370d4acb6ef8a37847f22] rtw89_ops_start+0x26/0x40 [rtw89_core fe07ecb874820b6d778370d4acb6ef8a37847f22] drv_start+0x42/0x100 [mac80211 c07fa22af8c3cf3f7d7ab3884ca990784d72e2d2] ieee80211_do_open+0x311/0x7d0 [mac80211 c07fa22af8c3cf3f7d7ab3884ca990784d72e2d2] ieee80211_open+0x6a/0x90 [mac80211 c07fa22af8c3cf3f7d7ab3884ca990784d72e2d2] __dev_open+0xe0/0x180 __dev_change_flags+0x1da/0x250 dev_change_flags+0x26/0x70 do_setlink+0x37c/0x12c0 ? ep_poll_callback+0x246/0x290 ? __nla_validate_parse+0x61/0xd00 ? __wake_up_common_lock+0x8f/0xd0 To fix this, follow Jonas' suggestion to switch the order of these functions and move register netdev to be the last step of PCI probe. Also, correct the error handling of rtw89_core_register_hw().
CVE-2023-53489 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tcp/udp: Fix memleaks of sk and zerocopy skbs with TX timestamp. syzkaller reported [0] memory leaks of an UDP socket and ZEROCOPY skbs. We can reproduce the problem with these sequences: sk = socket(AF_INET, SOCK_DGRAM, 0) sk.setsockopt(SOL_SOCKET, SO_TIMESTAMPING, SOF_TIMESTAMPING_TX_SOFTWARE) sk.setsockopt(SOL_SOCKET, SO_ZEROCOPY, 1) sk.sendto(b'', MSG_ZEROCOPY, ('127.0.0.1', 53)) sk.close() sendmsg() calls msg_zerocopy_alloc(), which allocates a skb, sets skb->cb->ubuf.refcnt to 1, and calls sock_hold(). Here, struct ubuf_info_msgzc indirectly holds a refcnt of the socket. When the skb is sent, __skb_tstamp_tx() clones it and puts the clone into the socket's error queue with the TX timestamp. When the original skb is received locally, skb_copy_ubufs() calls skb_unclone(), and pskb_expand_head() increments skb->cb->ubuf.refcnt. This additional count is decremented while freeing the skb, but struct ubuf_info_msgzc still has a refcnt, so __msg_zerocopy_callback() is not called. The last refcnt is not released unless we retrieve the TX timestamped skb by recvmsg(). Since we clear the error queue in inet_sock_destruct() after the socket's refcnt reaches 0, there is a circular dependency. If we close() the socket holding such skbs, we never call sock_put() and leak the count, sk, and skb. TCP has the same problem, and commit e0c8bccd40fc ("net: stream: purge sk_error_queue in sk_stream_kill_queues()") tried to fix it by calling skb_queue_purge() during close(). However, there is a small chance that skb queued in a qdisc or device could be put into the error queue after the skb_queue_purge() call. In __skb_tstamp_tx(), the cloned skb should not have a reference to the ubuf to remove the circular dependency, but skb_clone() does not call skb_copy_ubufs() for zerocopy skb. So, we need to call skb_orphan_frags_rx() for the cloned skb to call skb_copy_ubufs(). [0]: BUG: memory leak unreferenced object 0xffff88800c6d2d00 (size 1152): comm "syz-executor392", pid 264, jiffies 4294785440 (age 13.044s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 cd af e8 81 00 00 00 00 ................ 02 00 07 40 00 00 00 00 00 00 00 00 00 00 00 00 ...@............ backtrace: [<0000000055636812>] sk_prot_alloc+0x64/0x2a0 net/core/sock.c:2024 [<0000000054d77b7a>] sk_alloc+0x3b/0x800 net/core/sock.c:2083 [<0000000066f3c7e0>] inet_create net/ipv4/af_inet.c:319 [inline] [<0000000066f3c7e0>] inet_create+0x31e/0xe40 net/ipv4/af_inet.c:245 [<000000009b83af97>] __sock_create+0x2ab/0x550 net/socket.c:1515 [<00000000b9b11231>] sock_create net/socket.c:1566 [inline] [<00000000b9b11231>] __sys_socket_create net/socket.c:1603 [inline] [<00000000b9b11231>] __sys_socket_create net/socket.c:1588 [inline] [<00000000b9b11231>] __sys_socket+0x138/0x250 net/socket.c:1636 [<000000004fb45142>] __do_sys_socket net/socket.c:1649 [inline] [<000000004fb45142>] __se_sys_socket net/socket.c:1647 [inline] [<000000004fb45142>] __x64_sys_socket+0x73/0xb0 net/socket.c:1647 [<0000000066999e0e>] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [<0000000066999e0e>] do_syscall_64+0x38/0x90 arch/x86/entry/common.c:80 [<0000000017f238c1>] entry_SYSCALL_64_after_hwframe+0x63/0xcd BUG: memory leak unreferenced object 0xffff888017633a00 (size 240): comm "syz-executor392", pid 264, jiffies 4294785440 (age 13.044s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 2d 6d 0c 80 88 ff ff .........-m..... backtrace: [<000000002b1c4368>] __alloc_skb+0x229/0x320 net/core/skbuff.c:497 [<00000000143579a6>] alloc_skb include/linux/skbuff.h:1265 [inline] [<00000000143579a6>] sock_omalloc+0xaa/0x190 net/core/sock.c:2596 [<00000000be626478>] msg_zerocopy_alloc net/core/skbuff.c:1294 [inline] [<00000000be626478>] ---truncated---
CVE-2022-50444 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: clk: tegra20: Fix refcount leak in tegra20_clock_init of_find_matching_node() returns a node pointer with refcount incremented, we should use of_node_put() on it when not need anymore. Add missing of_node_put() to avoid refcount leak.
CVE-2022-50424 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921: resource leaks at mt7921_check_offload_capability() Fixed coverity issue with resource leaks at variable "fw" going out of scope leaks the storage it points to mt7921_check_offload_capability(). Addresses-Coverity-ID: 1527806 ("Resource leaks")
CVE-2022-50469 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: staging: rtl8723bs: fix potential memory leak in rtw_init_drv_sw() In rtw_init_drv_sw(), there are various init functions are called to populate the padapter structure and some checks for their return value. However, except for the first one error path, the other five error paths do not properly release the previous allocated resources, which leads to various memory leaks. This patch fixes them and keeps the success and error separate. Note that these changes keep the form of `rtw_init_drv_sw()` in "drivers/staging/r8188eu/os_dep/os_intfs.c". As there is no proper device to test with, no runtime testing was performed.
CVE-2023-53461 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: io_uring: wait interruptibly for request completions on exit WHen the ring exits, cleanup is done and the final cancelation and waiting on completions is done by io_ring_exit_work. That function is invoked by kworker, which doesn't take any signals. Because of that, it doesn't really matter if we wait for completions in TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE state. However, it does matter to the hung task detection checker! Normally we expect cancelations and completions to happen rather quickly. Some test cases, however, will exit the ring and park the owning task stopped (eg via SIGSTOP). If the owning task needs to run task_work to complete requests, then io_ring_exit_work won't make any progress until the task is runnable again. Hence io_ring_exit_work can trigger the hung task detection, which is particularly problematic if panic-on-hung-task is enabled. As the ring exit doesn't take signals to begin with, have it wait interruptibly rather than uninterruptibly. io_uring has a separate stuck-exit warning that triggers independently anyway, so we're not really missing anything by making this switch.
CVE-2022-50440 1 Linux 1 Linux Kernel 2025-10-02 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Validate the box size for the snooped cursor Invalid userspace dma surface copies could potentially overflow the memcpy from the surface to the snooped image leading to crashes. To fix it the dimensions of the copybox have to be validated against the expected size of the snooped cursor.
CVE-2022-50447 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_conn: Fix crash on hci_create_cis_sync When attempting to connect multiple ISO sockets without using DEFER_SETUP may result in the following crash: BUG: KASAN: null-ptr-deref in hci_create_cis_sync+0x18b/0x2b0 Read of size 2 at addr 0000000000000036 by task kworker/u3:1/50 CPU: 0 PID: 50 Comm: kworker/u3:1 Not tainted 6.0.0-rc7-02243-gb84a13ff4eda #4373 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.0-1.fc36 04/01/2014 Workqueue: hci0 hci_cmd_sync_work Call Trace: <TASK> dump_stack_lvl+0x19/0x27 kasan_report+0xbc/0xf0 ? hci_create_cis_sync+0x18b/0x2b0 hci_create_cis_sync+0x18b/0x2b0 ? get_link_mode+0xd0/0xd0 ? __ww_mutex_lock_slowpath+0x10/0x10 ? mutex_lock+0xe0/0xe0 ? get_link_mode+0xd0/0xd0 hci_cmd_sync_work+0x111/0x190 process_one_work+0x427/0x650 worker_thread+0x87/0x750 ? process_one_work+0x650/0x650 kthread+0x14e/0x180 ? kthread_exit+0x50/0x50 ret_from_fork+0x22/0x30 </TASK>
CVE-2025-39892 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: soc-core: care NULL dirver name on snd_soc_lookup_component_nolocked() soc-generic-dmaengine-pcm.c uses same dev for both CPU and Platform. In such case, CPU component driver might not have driver->name, then snd_soc_lookup_component_nolocked() will be NULL pointer access error. Care NULL driver name. Call trace: strcmp from snd_soc_lookup_component_nolocked+0x64/0xa4 snd_soc_lookup_component_nolocked from snd_soc_unregister_component_by_driver+0x2c/0x44 snd_soc_unregister_component_by_driver from snd_dmaengine_pcm_unregister+0x28/0x64 snd_dmaengine_pcm_unregister from devres_release_all+0x98/0xfc devres_release_all from device_unbind_cleanup+0xc/0x60 device_unbind_cleanup from really_probe+0x220/0x2c8 really_probe from __driver_probe_device+0x88/0x1a0 __driver_probe_device from driver_probe_device+0x30/0x110 driver_probe_device from __driver_attach+0x90/0x178 __driver_attach from bus_for_each_dev+0x7c/0xcc bus_for_each_dev from bus_add_driver+0xcc/0x1ec bus_add_driver from driver_register+0x80/0x11c driver_register from do_one_initcall+0x58/0x23c do_one_initcall from kernel_init_freeable+0x198/0x1f4 kernel_init_freeable from kernel_init+0x1c/0x12c kernel_init from ret_from_fork+0x14/0x28
CVE-2023-53462 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: hsr: Fix uninit-value access in fill_frame_info() Syzbot reports the following uninit-value access problem. ===================================================== BUG: KMSAN: uninit-value in fill_frame_info net/hsr/hsr_forward.c:601 [inline] BUG: KMSAN: uninit-value in hsr_forward_skb+0x9bd/0x30f0 net/hsr/hsr_forward.c:616 fill_frame_info net/hsr/hsr_forward.c:601 [inline] hsr_forward_skb+0x9bd/0x30f0 net/hsr/hsr_forward.c:616 hsr_dev_xmit+0x192/0x330 net/hsr/hsr_device.c:223 __netdev_start_xmit include/linux/netdevice.h:4889 [inline] netdev_start_xmit include/linux/netdevice.h:4903 [inline] xmit_one net/core/dev.c:3544 [inline] dev_hard_start_xmit+0x247/0xa10 net/core/dev.c:3560 __dev_queue_xmit+0x34d0/0x52a0 net/core/dev.c:4340 dev_queue_xmit include/linux/netdevice.h:3082 [inline] packet_xmit+0x9c/0x6b0 net/packet/af_packet.c:276 packet_snd net/packet/af_packet.c:3087 [inline] packet_sendmsg+0x8b1d/0x9f30 net/packet/af_packet.c:3119 sock_sendmsg_nosec net/socket.c:730 [inline] sock_sendmsg net/socket.c:753 [inline] __sys_sendto+0x781/0xa30 net/socket.c:2176 __do_sys_sendto net/socket.c:2188 [inline] __se_sys_sendto net/socket.c:2184 [inline] __ia32_sys_sendto+0x11f/0x1c0 net/socket.c:2184 do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline] __do_fast_syscall_32+0xa2/0x100 arch/x86/entry/common.c:178 do_fast_syscall_32+0x37/0x80 arch/x86/entry/common.c:203 do_SYSENTER_32+0x1f/0x30 arch/x86/entry/common.c:246 entry_SYSENTER_compat_after_hwframe+0x70/0x82 Uninit was created at: slab_post_alloc_hook+0x12f/0xb70 mm/slab.h:767 slab_alloc_node mm/slub.c:3478 [inline] kmem_cache_alloc_node+0x577/0xa80 mm/slub.c:3523 kmalloc_reserve+0x148/0x470 net/core/skbuff.c:559 __alloc_skb+0x318/0x740 net/core/skbuff.c:644 alloc_skb include/linux/skbuff.h:1286 [inline] alloc_skb_with_frags+0xc8/0xbd0 net/core/skbuff.c:6299 sock_alloc_send_pskb+0xa80/0xbf0 net/core/sock.c:2794 packet_alloc_skb net/packet/af_packet.c:2936 [inline] packet_snd net/packet/af_packet.c:3030 [inline] packet_sendmsg+0x70e8/0x9f30 net/packet/af_packet.c:3119 sock_sendmsg_nosec net/socket.c:730 [inline] sock_sendmsg net/socket.c:753 [inline] __sys_sendto+0x781/0xa30 net/socket.c:2176 __do_sys_sendto net/socket.c:2188 [inline] __se_sys_sendto net/socket.c:2184 [inline] __ia32_sys_sendto+0x11f/0x1c0 net/socket.c:2184 do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline] __do_fast_syscall_32+0xa2/0x100 arch/x86/entry/common.c:178 do_fast_syscall_32+0x37/0x80 arch/x86/entry/common.c:203 do_SYSENTER_32+0x1f/0x30 arch/x86/entry/common.c:246 entry_SYSENTER_compat_after_hwframe+0x70/0x82 It is because VLAN not yet supported in hsr driver. Return error when protocol is ETH_P_8021Q in fill_frame_info() now to fix it.
CVE-2023-53500 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: xfrm: fix slab-use-after-free in decode_session6 When the xfrm device is set to the qdisc of the sfb type, the cb field of the sent skb may be modified during enqueuing. Then, slab-use-after-free may occur when the xfrm device sends IPv6 packets. The stack information is as follows: BUG: KASAN: slab-use-after-free in decode_session6+0x103f/0x1890 Read of size 1 at addr ffff8881111458ef by task swapper/3/0 CPU: 3 PID: 0 Comm: swapper/3 Not tainted 6.4.0-next-20230707 #409 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014 Call Trace: <IRQ> dump_stack_lvl+0xd9/0x150 print_address_description.constprop.0+0x2c/0x3c0 kasan_report+0x11d/0x130 decode_session6+0x103f/0x1890 __xfrm_decode_session+0x54/0xb0 xfrmi_xmit+0x173/0x1ca0 dev_hard_start_xmit+0x187/0x700 sch_direct_xmit+0x1a3/0xc30 __qdisc_run+0x510/0x17a0 __dev_queue_xmit+0x2215/0x3b10 neigh_connected_output+0x3c2/0x550 ip6_finish_output2+0x55a/0x1550 ip6_finish_output+0x6b9/0x1270 ip6_output+0x1f1/0x540 ndisc_send_skb+0xa63/0x1890 ndisc_send_rs+0x132/0x6f0 addrconf_rs_timer+0x3f1/0x870 call_timer_fn+0x1a0/0x580 expire_timers+0x29b/0x4b0 run_timer_softirq+0x326/0x910 __do_softirq+0x1d4/0x905 irq_exit_rcu+0xb7/0x120 sysvec_apic_timer_interrupt+0x97/0xc0 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x1a/0x20 RIP: 0010:intel_idle_hlt+0x23/0x30 Code: 1f 84 00 00 00 00 00 f3 0f 1e fa 41 54 41 89 d4 0f 1f 44 00 00 66 90 0f 1f 44 00 00 0f 00 2d c4 9f ab 00 0f 1f 44 00 00 fb f4 <fa> 44 89 e0 41 5c c3 66 0f 1f 44 00 00 f3 0f 1e fa 41 54 41 89 d4 RSP: 0018:ffffc90000197d78 EFLAGS: 00000246 RAX: 00000000000a83c3 RBX: ffffe8ffffd09c50 RCX: ffffffff8a22d8e5 RDX: 0000000000000001 RSI: ffffffff8d3f8080 RDI: ffffe8ffffd09c50 RBP: ffffffff8d3f8080 R08: 0000000000000001 R09: ffffed1026ba6d9d R10: ffff888135d36ceb R11: 0000000000000001 R12: 0000000000000001 R13: ffffffff8d3f8100 R14: 0000000000000001 R15: 0000000000000000 cpuidle_enter_state+0xd3/0x6f0 cpuidle_enter+0x4e/0xa0 do_idle+0x2fe/0x3c0 cpu_startup_entry+0x18/0x20 start_secondary+0x200/0x290 secondary_startup_64_no_verify+0x167/0x16b </TASK> Allocated by task 939: kasan_save_stack+0x22/0x40 kasan_set_track+0x25/0x30 __kasan_slab_alloc+0x7f/0x90 kmem_cache_alloc_node+0x1cd/0x410 kmalloc_reserve+0x165/0x270 __alloc_skb+0x129/0x330 inet6_ifa_notify+0x118/0x230 __ipv6_ifa_notify+0x177/0xbe0 addrconf_dad_completed+0x133/0xe00 addrconf_dad_work+0x764/0x1390 process_one_work+0xa32/0x16f0 worker_thread+0x67d/0x10c0 kthread+0x344/0x440 ret_from_fork+0x1f/0x30 The buggy address belongs to the object at ffff888111145800 which belongs to the cache skbuff_small_head of size 640 The buggy address is located 239 bytes inside of freed 640-byte region [ffff888111145800, ffff888111145a80) As commit f855691975bb ("xfrm6: Fix the nexthdr offset in _decode_session6.") showed, xfrm_decode_session was originally intended only for the receive path. IP6CB(skb)->nhoff is not set during transmission. Therefore, set the cb field in the skb to 0 before sending packets.
CVE-2023-53525 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/cma: Allow UD qp_type to join multicast only As for multicast: - The SIDR is the only mode that makes sense; - Besides PS_UDP, other port spaces like PS_IB is also allowed, as it is UD compatible. In this case qkey also needs to be set [1]. This patch allows only UD qp_type to join multicast, and set qkey to default if it's not set, to fix an uninit-value error: the ib->rec.qkey field is accessed without being initialized. ===================================================== BUG: KMSAN: uninit-value in cma_set_qkey drivers/infiniband/core/cma.c:510 [inline] BUG: KMSAN: uninit-value in cma_make_mc_event+0xb73/0xe00 drivers/infiniband/core/cma.c:4570 cma_set_qkey drivers/infiniband/core/cma.c:510 [inline] cma_make_mc_event+0xb73/0xe00 drivers/infiniband/core/cma.c:4570 cma_iboe_join_multicast drivers/infiniband/core/cma.c:4782 [inline] rdma_join_multicast+0x2b83/0x30a0 drivers/infiniband/core/cma.c:4814 ucma_process_join+0xa76/0xf60 drivers/infiniband/core/ucma.c:1479 ucma_join_multicast+0x1e3/0x250 drivers/infiniband/core/ucma.c:1546 ucma_write+0x639/0x6d0 drivers/infiniband/core/ucma.c:1732 vfs_write+0x8ce/0x2030 fs/read_write.c:588 ksys_write+0x28c/0x520 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline] __ia32_sys_write+0xdb/0x120 fs/read_write.c:652 do_syscall_32_irqs_on arch/x86/entry/common.c:114 [inline] __do_fast_syscall_32+0x96/0xf0 arch/x86/entry/common.c:180 do_fast_syscall_32+0x34/0x70 arch/x86/entry/common.c:205 do_SYSENTER_32+0x1b/0x20 arch/x86/entry/common.c:248 entry_SYSENTER_compat_after_hwframe+0x4d/0x5c Local variable ib.i created at: cma_iboe_join_multicast drivers/infiniband/core/cma.c:4737 [inline] rdma_join_multicast+0x586/0x30a0 drivers/infiniband/core/cma.c:4814 ucma_process_join+0xa76/0xf60 drivers/infiniband/core/ucma.c:1479 CPU: 0 PID: 29874 Comm: syz-executor.3 Not tainted 5.16.0-rc3-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 ===================================================== [1] https://lore.kernel.org/linux-rdma/20220117183832.GD84788@nvidia.com/
CVE-2023-53510 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Fix handling of lrbp->cmd ufshcd_queuecommand() may be called two times in a row for a SCSI command before it is completed. Hence make the following changes: - In the functions that submit a command, do not check the old value of lrbp->cmd nor clear lrbp->cmd in error paths. - In ufshcd_release_scsi_cmd(), do not clear lrbp->cmd. See also scsi_send_eh_cmnd(). This commit prevents that the following appears if a command times out: WARNING: at drivers/ufs/core/ufshcd.c:2965 ufshcd_queuecommand+0x6f8/0x9a8 Call trace: ufshcd_queuecommand+0x6f8/0x9a8 scsi_send_eh_cmnd+0x2c0/0x960 scsi_eh_test_devices+0x100/0x314 scsi_eh_ready_devs+0xd90/0x114c scsi_error_handler+0x2b4/0xb70 kthread+0x16c/0x1e0
CVE-2023-53511 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: io_uring: fix fget leak when fs don't support nowait buffered read Heming reported a BUG when using io_uring doing link-cp on ocfs2. [1] Do the following steps can reproduce this BUG: mount -t ocfs2 /dev/vdc /mnt/ocfs2 cp testfile /mnt/ocfs2/ ./link-cp /mnt/ocfs2/testfile /mnt/ocfs2/testfile.1 umount /mnt/ocfs2 Then umount will fail, and it outputs: umount: /mnt/ocfs2: target is busy. While tracing umount, it blames mnt_get_count() not return as expected. Do a deep investigation for fget()/fput() on related code flow, I've finally found that fget() leaks since ocfs2 doesn't support nowait buffered read. io_issue_sqe |-io_assign_file // do fget() first |-io_read |-io_iter_do_read |-ocfs2_file_read_iter // return -EOPNOTSUPP |-kiocb_done |-io_rw_done |-__io_complete_rw_common // set REQ_F_REISSUE |-io_resubmit_prep |-io_req_prep_async // override req->file, leak happens This was introduced by commit a196c78b5443 in v5.18. Fix it by don't re-assign req->file if it has already been assigned. [1] https://lore.kernel.org/ocfs2-devel/ab580a75-91c8-d68a-3455-40361be1bfa8@linux.alibaba.com/T/#t
CVE-2023-53523 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: can: gs_usb: fix time stamp counter initialization If the gs_usb device driver is unloaded (or unbound) before the interface is shut down, the USB stack first calls the struct usb_driver::disconnect and then the struct net_device_ops::ndo_stop callback. In gs_usb_disconnect() all pending bulk URBs are killed, i.e. no more RX'ed CAN frames are send from the USB device to the host. Later in gs_can_close() a reset control message is send to each CAN channel to remove the controller from the CAN bus. In this race window the USB device can still receive CAN frames from the bus and internally queue them to be send to the host. At least in the current version of the candlelight firmware, the queue of received CAN frames is not emptied during the reset command. After loading (or binding) the gs_usb driver, new URBs are submitted during the struct net_device_ops::ndo_open callback and the candlelight firmware starts sending its already queued CAN frames to the host. However, this scenario was not considered when implementing the hardware timestamp function. The cycle counter/time counter infrastructure is set up (gs_usb_timestamp_init()) after the USBs are submitted, resulting in a NULL pointer dereference if timecounter_cyc2time() (via the call chain: gs_usb_receive_bulk_callback() -> gs_usb_set_timestamp() -> gs_usb_skb_set_timestamp()) is called too early. Move the gs_usb_timestamp_init() function before the URBs are submitted to fix this problem. For a comprehensive solution, we need to consider gs_usb devices with more than 1 channel. The cycle counter/time counter infrastructure is setup per channel, but the RX URBs are per device. Once gs_can_open() of _a_ channel has been called, and URBs have been submitted, the gs_usb_receive_bulk_callback() can be called for _all_ available channels, even for channels that are not running, yet. As cycle counter/time counter has not set up, this will again lead to a NULL pointer dereference. Convert the cycle counter/time counter from a "per channel" to a "per device" functionality. Also set it up, before submitting any URBs to the device. Further in gs_usb_receive_bulk_callback(), don't process any URBs for not started CAN channels, only resubmit the URB.