| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A vulnerability in the Smart Install feature of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to trigger a reload of an affected device, resulting in a denial of service (DoS) condition, or to execute arbitrary code on an affected device. The vulnerability is due to improper validation of packet data. An attacker could exploit this vulnerability by sending a crafted Smart Install message to an affected device on TCP port 4786. A successful exploit could allow the attacker to cause a buffer overflow on the affected device, which could have the following impacts: Triggering a reload of the device, Allowing the attacker to execute arbitrary code on the device, Causing an indefinite loop on the affected device that triggers a watchdog crash. Cisco Bug IDs: CSCvg76186. |
| iccDEV provides a set of libraries and tools for working with ICC color management profiles. Versions 2.3.1.1 and below are prone to have Undefined Behavior (UB) and Out of Memory errors. This issue is fixed in version 2.3.1.2. |
| Multiple Buffer Overflow vulnerabilities in the Link Layer Discovery Protocol (LLDP) subsystem of Cisco IOS Software, Cisco IOS XE Software, and Cisco IOS XR Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition or execute arbitrary code with elevated privileges on an affected device. Cisco Bug IDs: CSCuo17183, CSCvd73487. |
| iccDEV provides a set of libraries and tools that allow for the interaction, manipulation, and application of International Color Consortium (ICC) color management profiles. Versions prior to 2.3.1.2 have a heap-buffer-overflow vulnerability in `SIccCalcOp::Describe()` at `IccProfLib/IccMpeCalc.cpp`. This vulnerability affects users of the iccDEV library who process ICC color profiles. Version 2.3.1.2 contains a patch. No known workarounds are available. |
| A vulnerability in the Simple Network Management Protocol (SNMP) subsystem of Cisco IOS Software running on certain models of Cisco Catalyst Switches could allow an authenticated, remote attacker to cause a denial of service (DoS) condition, aka a GET MIB Object ID Denial of Service Vulnerability. The vulnerability is due to a condition that could occur when the affected software processes an SNMP read request that contains a request for the ciscoFlashMIB object ID (OID). An attacker could trigger this vulnerability by issuing an SNMP GET request for the ciscoFlashMIB OID on an affected device. A successful exploit could cause the affected device to restart due to a SYS-3-CPUHOG. This vulnerability affects the following Cisco devices if they are running a vulnerable release of Cisco IOS Software and are configured to use SNMP Version 2 (SNMPv2) or SNMP Version 3 (SNMPv3): Cisco Catalyst 2960-L Series Switches, Cisco Catalyst Digital Building Series Switches 8P, Cisco Catalyst Digital Building Series Switches 8U. Cisco Bug IDs: CSCvd89541. |
| iccDEV provides a set of libraries and tools that allow for the interaction, manipulation, and application of International Color Consortium (ICC) color management profiles. Versions prior to 2.3.1.2 have a heap-buffer-overflow vulnerability in `CIccProfileXml::ParseBasic()` at `IccXML/IccLibXML/IccProfileXml.cpp`. This vulnerability affects users of the iccDEV library who process ICC color profiles. Version 2.3.1.2 contains a patch. No known workarounds are available. |
| A vulnerability in the implementation of Internet Key Exchange Version 1 (IKEv1) functionality in Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause an affected device to reload, resulting in a denial of service (DoS) condition. The vulnerability is due to improper validation of specific IKEv1 packets. An attacker could exploit this vulnerability by sending crafted IKEv1 packets to an affected device during an IKE negotiation. A successful exploit could allow the attacker to cause an affected device to reload, resulting in a DoS condition. Cisco Bug IDs: CSCuj73916. |
| A vulnerability in the Internet Key Exchange Version 2 (IKEv2) module of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause a memory leak or a reload of an affected device that leads to a denial of service (DoS) condition. The vulnerability is due to incorrect processing of certain IKEv2 packets. An attacker could exploit this vulnerability by sending crafted IKEv2 packets to an affected device to be processed. A successful exploit could cause an affected device to continuously consume memory and eventually reload, resulting in a DoS condition. Cisco Bug IDs: CSCvf22394. |
| An improper boundary check in DSP driver prior to SMR Mar-2021 Release 1 allows out of bounds memory access. |
| An incorrect implementation handling file descriptor in dpu driver prior to SMR Mar-2021 Release 1 results in memory corruption leading to kernel panic. |
| Uncontrolled resource consumption for some Intel(R) SPS firmware before version SPS_E5_06.01.04.002.0 may allow a privileged user to potentially enable denial of service via network access. |
| Uncontrolled search path in Intel(R) QSFP+ Configuration Utility software, all versions, may allow an authenticated user to potentially enable escalation of privilege via local access. |
| Improper access control in firmware for some Intel(R) Thunderbol(TM) Controllers versions before 41 may allow a privileged user to enable denial of service via local access. |
| Improper authentication in some Intel(R) Server Product OpenBMC firmware before version egs-1.09 may allow an authenticated user to enable escalation of privilege via local access. |
| Improper buffer restrictions in Intel(R) Optimization for TensorFlow before version 2.13.0 may allow an authenticated user to potentially enable escalation of privilege via local access. |
| Improper buffer restrictions the Intel(R) C++ Compiler Classic before version 2021.8 for Intel(R) oneAPI Toolkits before version 2022.3.1 may allow a privileged user to potentially enable escalation of privilege via local access.
|
| Insufficiently protected credentials in some Intel(R) Server Product OpenBMC firmware before versions egs-1.05 may allow an unauthenticated user to enable information disclosure via network access. |
| In ExtremeControl before 25.5.12, a cross-site scripting (XSS) vulnerability was discovered in a login interface of the affected application. The issue stems from improper handling of user-supplied input within HTML attributes, allowing an attacker to inject script code that may execute in a user's browser under specific interaction conditions. Successful exploitation could lead to exposure of user data or unauthorized actions within the browser context. |
| OpenLDAP Lightning Memory-Mapped Database (LMDB) versions up to and including 0.9.14, prior to commit 8e1fda8, contain a heap buffer underflow in the readline() function of mdb_load. When processing malformed input containing an embedded NUL byte, an unsigned offset calculation can underflow and cause an out-of-bounds read of one byte before the allocated heap buffer. This can cause mdb_load to crash, leading to a limited denial-of-service condition. |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: rtl9300: ensure data length is within supported range
Add an explicit check for the xfer length to 'rtl9300_i2c_config_xfer'
to ensure the data length isn't within the supported range. In
particular a data length of 0 is not supported by the hardware and
causes unintended or destructive behaviour.
This limitation becomes obvious when looking at the register
documentation [1]. 4 bits are reserved for DATA_WIDTH and the value
of these 4 bits is used as N + 1, allowing a data length range of
1 <= len <= 16.
Affected by this is the SMBus Quick Operation which works with a data
length of 0. Passing 0 as the length causes an underflow of the value
due to:
(len - 1) & 0xf
and effectively specifying a transfer length of 16 via the registers.
This causes a 16-byte write operation instead of a Quick Write. For
example, on SFP modules without write-protected EEPROM this soft-bricks
them by overwriting some initial bytes.
For completeness, also add a quirk for the zero length.
[1] https://svanheule.net/realtek/longan/register/i2c_mst1_ctrl2 |