| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: seq: Fix race of snd_seq_timer_open()
The timer instance per queue is exclusive, and snd_seq_timer_open()
should have managed the concurrent accesses. It looks as if it's
checking the already existing timer instance at the beginning, but
it's not right, because there is no protection, hence any later
concurrent call of snd_seq_timer_open() may override the timer
instance easily. This may result in UAF, as the leftover timer
instance can keep running while the queue itself gets closed, as
spotted by syzkaller recently.
For avoiding the race, add a proper check at the assignment of
tmr->timeri again, and return -EBUSY if it's been already registered. |
| In the Linux kernel, the following vulnerability has been resolved:
drm: Fix use-after-free read in drm_getunique()
There is a time-of-check-to-time-of-use error in drm_getunique() due
to retrieving file_priv->master prior to locking the device's master
mutex.
An example can be seen in the crash report of the use-after-free error
found by Syzbot:
https://syzkaller.appspot.com/bug?id=148d2f1dfac64af52ffd27b661981a540724f803
In the report, the master pointer was used after being freed. This is
because another process had acquired the device's master mutex in
drm_setmaster_ioctl(), then overwrote fpriv->master in
drm_new_set_master(). The old value of fpriv->master was subsequently
freed before the mutex was unlocked.
To fix this, we lock the device's master mutex before retrieving the
pointer from from fpriv->master. This patch passes the Syzbot
reproducer test. |
| In the Linux kernel, the following vulnerability has been resolved:
kvm: avoid speculation-based attacks from out-of-range memslot accesses
KVM's mechanism for accessing guest memory translates a guest physical
address (gpa) to a host virtual address using the right-shifted gpa
(also known as gfn) and a struct kvm_memory_slot. The translation is
performed in __gfn_to_hva_memslot using the following formula:
hva = slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE
It is expected that gfn falls within the boundaries of the guest's
physical memory. However, a guest can access invalid physical addresses
in such a way that the gfn is invalid.
__gfn_to_hva_memslot is called from kvm_vcpu_gfn_to_hva_prot, which first
retrieves a memslot through __gfn_to_memslot. While __gfn_to_memslot
does check that the gfn falls within the boundaries of the guest's
physical memory or not, a CPU can speculate the result of the check and
continue execution speculatively using an illegal gfn. The speculation
can result in calculating an out-of-bounds hva. If the resulting host
virtual address is used to load another guest physical address, this
is effectively a Spectre gadget consisting of two consecutive reads,
the second of which is data dependent on the first.
Right now it's not clear if there are any cases in which this is
exploitable. One interesting case was reported by the original author
of this patch, and involves visiting guest page tables on x86. Right
now these are not vulnerable because the hva read goes through get_user(),
which contains an LFENCE speculation barrier. However, there are
patches in progress for x86 uaccess.h to mask kernel addresses instead of
using LFENCE; once these land, a guest could use speculation to read
from the VMM's ring 3 address space. Other architectures such as ARM
already use the address masking method, and would be susceptible to
this same kind of data-dependent access gadgets. Therefore, this patch
proactively protects from these attacks by masking out-of-bounds gfns
in __gfn_to_hva_memslot, which blocks speculation of invalid hvas.
Sean Christopherson noted that this patch does not cover
kvm_read_guest_offset_cached. This however is limited to a few bytes
past the end of the cache, and therefore it is unlikely to be useful in
the context of building a chain of data dependent accesses. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix use-after-free in lpfc_unreg_rpi() routine
An error is detected with the following report when unloading the driver:
"KASAN: use-after-free in lpfc_unreg_rpi+0x1b1b"
The NLP_REG_LOGIN_SEND nlp_flag is set in lpfc_reg_fab_ctrl_node(), but the
flag is not cleared upon completion of the login.
This allows a second call to lpfc_unreg_rpi() to proceed with nlp_rpi set
to LPFC_RPI_ALLOW_ERROR. This results in a use after free access when used
as an rpi_ids array index.
Fix by clearing the NLP_REG_LOGIN_SEND nlp_flag in
lpfc_mbx_cmpl_fc_reg_login(). |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: scsi_debug: Fix out-of-bound read in resp_readcap16()
The following warning was observed running syzkaller:
[ 3813.830724] sg_write: data in/out 65466/242 bytes for SCSI command 0x9e-- guessing data in;
[ 3813.830724] program syz-executor not setting count and/or reply_len properly
[ 3813.836956] ==================================================================
[ 3813.839465] BUG: KASAN: stack-out-of-bounds in sg_copy_buffer+0x157/0x1e0
[ 3813.841773] Read of size 4096 at addr ffff8883cf80f540 by task syz-executor/1549
[ 3813.846612] Call Trace:
[ 3813.846995] dump_stack+0x108/0x15f
[ 3813.847524] print_address_description+0xa5/0x372
[ 3813.848243] kasan_report.cold+0x236/0x2a8
[ 3813.849439] check_memory_region+0x240/0x270
[ 3813.850094] memcpy+0x30/0x80
[ 3813.850553] sg_copy_buffer+0x157/0x1e0
[ 3813.853032] sg_copy_from_buffer+0x13/0x20
[ 3813.853660] fill_from_dev_buffer+0x135/0x370
[ 3813.854329] resp_readcap16+0x1ac/0x280
[ 3813.856917] schedule_resp+0x41f/0x1630
[ 3813.858203] scsi_debug_queuecommand+0xb32/0x17e0
[ 3813.862699] scsi_dispatch_cmd+0x330/0x950
[ 3813.863329] scsi_request_fn+0xd8e/0x1710
[ 3813.863946] __blk_run_queue+0x10b/0x230
[ 3813.864544] blk_execute_rq_nowait+0x1d8/0x400
[ 3813.865220] sg_common_write.isra.0+0xe61/0x2420
[ 3813.871637] sg_write+0x6c8/0xef0
[ 3813.878853] __vfs_write+0xe4/0x800
[ 3813.883487] vfs_write+0x17b/0x530
[ 3813.884008] ksys_write+0x103/0x270
[ 3813.886268] __x64_sys_write+0x77/0xc0
[ 3813.886841] do_syscall_64+0x106/0x360
[ 3813.887415] entry_SYSCALL_64_after_hwframe+0x44/0xa9
This issue can be reproduced with the following syzkaller log:
r0 = openat(0xffffffffffffff9c, &(0x7f0000000040)='./file0\x00', 0x26e1, 0x0)
r1 = syz_open_procfs(0xffffffffffffffff, &(0x7f0000000000)='fd/3\x00')
open_by_handle_at(r1, &(0x7f00000003c0)=ANY=[@ANYRESHEX], 0x602000)
r2 = syz_open_dev$sg(&(0x7f0000000000), 0x0, 0x40782)
write$binfmt_aout(r2, &(0x7f0000000340)=ANY=[@ANYBLOB="00000000deff000000000000000000000000000000000000000000000000000047f007af9e107a41ec395f1bded7be24277a1501ff6196a83366f4e6362bc0ff2b247f68a972989b094b2da4fb3607fcf611a22dd04310d28c75039d"], 0x126)
In resp_readcap16() we get "int alloc_len" value -1104926854, and then pass
the huge arr_len to fill_from_dev_buffer(), but arr is only 32 bytes. This
leads to OOB in sg_copy_buffer().
To solve this issue, define alloc_len as u32. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: mediatek: fix global-out-of-bounds issue
When eint virtual eint number is greater than gpio number,
it maybe produce 'desc[eint_n]' size globle-out-of-bounds issue. |
| In the Linux kernel, the following vulnerability has been resolved:
tun: avoid double free in tun_free_netdev
Avoid double free in tun_free_netdev() by moving the
dev->tstats and tun->security allocs to a new ndo_init routine
(tun_net_init()) that will be called by register_netdevice().
ndo_init is paired with the desctructor (tun_free_netdev()),
so if there's an error in register_netdevice() the destructor
will handle the frees.
BUG: KASAN: double-free or invalid-free in selinux_tun_dev_free_security+0x1a/0x20 security/selinux/hooks.c:5605
CPU: 0 PID: 25750 Comm: syz-executor416 Not tainted 5.16.0-rc2-syzk #1
Hardware name: Red Hat KVM, BIOS
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x89/0xb5 lib/dump_stack.c:106
print_address_description.constprop.9+0x28/0x160 mm/kasan/report.c:247
kasan_report_invalid_free+0x55/0x80 mm/kasan/report.c:372
____kasan_slab_free mm/kasan/common.c:346 [inline]
__kasan_slab_free+0x107/0x120 mm/kasan/common.c:374
kasan_slab_free include/linux/kasan.h:235 [inline]
slab_free_hook mm/slub.c:1723 [inline]
slab_free_freelist_hook mm/slub.c:1749 [inline]
slab_free mm/slub.c:3513 [inline]
kfree+0xac/0x2d0 mm/slub.c:4561
selinux_tun_dev_free_security+0x1a/0x20 security/selinux/hooks.c:5605
security_tun_dev_free_security+0x4f/0x90 security/security.c:2342
tun_free_netdev+0xe6/0x150 drivers/net/tun.c:2215
netdev_run_todo+0x4df/0x840 net/core/dev.c:10627
rtnl_unlock+0x13/0x20 net/core/rtnetlink.c:112
__tun_chr_ioctl+0x80c/0x2870 drivers/net/tun.c:3302
tun_chr_ioctl+0x2f/0x40 drivers/net/tun.c:3311
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x19d/0x220 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3a/0x80 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae |
| In the Linux kernel, the following vulnerability has been resolved:
isdn: cpai: check ctr->cnr to avoid array index out of bound
The cmtp_add_connection() would add a cmtp session to a controller
and run a kernel thread to process cmtp.
__module_get(THIS_MODULE);
session->task = kthread_run(cmtp_session, session, "kcmtpd_ctr_%d",
session->num);
During this process, the kernel thread would call detach_capi_ctr()
to detach a register controller. if the controller
was not attached yet, detach_capi_ctr() would
trigger an array-index-out-bounds bug.
[ 46.866069][ T6479] UBSAN: array-index-out-of-bounds in
drivers/isdn/capi/kcapi.c:483:21
[ 46.867196][ T6479] index -1 is out of range for type 'capi_ctr *[32]'
[ 46.867982][ T6479] CPU: 1 PID: 6479 Comm: kcmtpd_ctr_0 Not tainted
5.15.0-rc2+ #8
[ 46.869002][ T6479] Hardware name: QEMU Standard PC (i440FX + PIIX,
1996), BIOS 1.14.0-2 04/01/2014
[ 46.870107][ T6479] Call Trace:
[ 46.870473][ T6479] dump_stack_lvl+0x57/0x7d
[ 46.870974][ T6479] ubsan_epilogue+0x5/0x40
[ 46.871458][ T6479] __ubsan_handle_out_of_bounds.cold+0x43/0x48
[ 46.872135][ T6479] detach_capi_ctr+0x64/0xc0
[ 46.872639][ T6479] cmtp_session+0x5c8/0x5d0
[ 46.873131][ T6479] ? __init_waitqueue_head+0x60/0x60
[ 46.873712][ T6479] ? cmtp_add_msgpart+0x120/0x120
[ 46.874256][ T6479] kthread+0x147/0x170
[ 46.874709][ T6479] ? set_kthread_struct+0x40/0x40
[ 46.875248][ T6479] ret_from_fork+0x1f/0x30
[ 46.875773][ T6479] |
| A flaw was found in runtimes-inventory-rhel8-operator. An internal proxy component is incorrectly configured. Because of this flaw, the proxy attaches the cluster's main administrative credentials to any command it receives, instead of only the specific reports it is supposed to handle.
This allows a standard user within the cluster to send unauthorized commands to the management platform, effectively acting with the full permissions of the cluster administrator. This could lead to unauthorized changes to the cluster's configuration or status on the Red Hat platform. |
| A flaw was found in Red Hat Satellite (Foreman component). This vulnerability allows an authenticated user with edit_settings permissions to achieve arbitrary command execution on the underlying operating system via insufficient server-side validation of command whitelisting. |
| A vulnerability has been found in itsourcecode COVID Tracking System 1.0. Affected is an unknown function of the file /admin/login.php of the component Admin Login. The manipulation of the argument Username leads to sql injection. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. |
| A vulnerability was found in itsourcecode COVID Tracking System 1.0. Affected by this vulnerability is an unknown functionality of the file /admin/?page=zone. The manipulation of the argument ID results in sql injection. The attack may be launched remotely. The exploit has been made public and could be used. |
| A vulnerability was identified in itsourcecode Online Pet Shop Management System 1.0. This affects an unknown part of the file /pet1/available.php. Such manipulation of the argument Name leads to sql injection. The attack can be executed remotely. The exploit is publicly available and might be used. |
| A security flaw has been discovered in itsourcecode Student Management System 1.0. This vulnerability affects unknown code of the file /update_program.php. Performing manipulation of the argument ID results in sql injection. The attack is possible to be carried out remotely. The exploit has been released to the public and may be exploited. |
| A weakness has been identified in itsourcecode Online Pet Shop Management System 1.0. This vulnerability affects unknown code of the file /pet1/addcnp.php. This manipulation of the argument cnpname causes sql injection. The attack can be initiated remotely. The exploit has been made available to the public and could be exploited. |
| A security vulnerability has been detected in itsourcecode Online Pet Shop Management System 1.0. This issue affects some unknown processing of the file /pet1/update_cnp.php. Such manipulation of the argument ID leads to sql injection. The attack can be launched remotely. The exploit has been disclosed publicly and may be used. |
| A vulnerability was found in code-projects Simple Attendance Record System 2.0. The affected element is an unknown function of the file /check.php. Performing manipulation of the argument student results in sql injection. Remote exploitation of the attack is possible. The exploit has been made public and could be used. |
| A vulnerability was determined in itsourcecode Student Management System 1.0. The impacted element is an unknown function of the file /update_subject.php. Executing manipulation of the argument ID can lead to sql injection. The attack can be executed remotely. The exploit has been publicly disclosed and may be utilized. |
| OS Command Injection vulnerability in Ruijie X60 PRO X60_10212014RG-X60 PRO V1.00/V2.00 allowing attackers to execute arbitrary commands via a crafted POST request to the module_get in file /usr/local/lua/dev_sta/networkConnect.lua. |
| OS Command Injection vulnerability in Ruijie RG-BCR RG-BCR600W allowing attackers to execute arbitrary commands via a crafted POST request to the get_wanobj in file /usr/lib/lua/luci/controller/admin/common.lua. |