| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| An arbitrary code execution vulnerability exists in the Code Stream directive functionality of OpenCFD OpenFOAM 2506. A specially crafted OpenFOAM simulation file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: Fix alignment fault in rtw_core_enable_beacon()
rtw_core_enable_beacon() reads 4 bytes from an address that is not a
multiple of 4. This results in a crash on some systems.
Do 1 byte reads/writes instead.
Unable to handle kernel paging request at virtual address ffff8000827e0522
Mem abort info:
ESR = 0x0000000096000021
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x21: alignment fault
Data abort info:
ISV = 0, ISS = 0x00000021, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
swapper pgtable: 4k pages, 48-bit VAs, pgdp=0000000005492000
[ffff8000827e0522] pgd=0000000000000000, p4d=10000001021d9403, pud=10000001021da403, pmd=100000011061c403, pte=00780000f3200f13
Internal error: Oops: 0000000096000021 [#1] SMP
Modules linked in: [...] rtw88_8822ce rtw88_8822c rtw88_pci rtw88_core [...]
CPU: 0 UID: 0 PID: 73 Comm: kworker/u32:2 Tainted: G W 6.17.9 #1-NixOS VOLUNTARY
Tainted: [W]=WARN
Hardware name: FriendlyElec NanoPC-T6 LTS (DT)
Workqueue: phy0 rtw_c2h_work [rtw88_core]
pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : rtw_pci_read32+0x18/0x40 [rtw88_pci]
lr : rtw_core_enable_beacon+0xe0/0x148 [rtw88_core]
sp : ffff800080cc3ca0
x29: ffff800080cc3ca0 x28: ffff0001031fc240 x27: ffff000102100828
x26: ffffd2cb7c9b4088 x25: ffff0001031fc2c0 x24: ffff000112fdef00
x23: ffff000112fdef18 x22: ffff000111c29970 x21: 0000000000000001
x20: 0000000000000001 x19: ffff000111c22040 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000000 x10: 0000000000000000 x9 : ffffd2cb6507c090
x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000
x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000
x2 : 0000000000007f10 x1 : 0000000000000522 x0 : ffff8000827e0522
Call trace:
rtw_pci_read32+0x18/0x40 [rtw88_pci] (P)
rtw_hw_scan_chan_switch+0x124/0x1a8 [rtw88_core]
rtw_fw_c2h_cmd_handle+0x254/0x290 [rtw88_core]
rtw_c2h_work+0x50/0x98 [rtw88_core]
process_one_work+0x178/0x3f8
worker_thread+0x208/0x418
kthread+0x120/0x220
ret_from_fork+0x10/0x20
Code: d28fe202 8b020000 f9524400 8b214000 (b9400000)
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
hfs: ensure sb->s_fs_info is always cleaned up
When hfs was converted to the new mount api a bug was introduced by
changing the allocation pattern of sb->s_fs_info. If setup_bdev_super()
fails after a new superblock has been allocated by sget_fc(), but before
hfs_fill_super() takes ownership of the filesystem-specific s_fs_info
data it was leaked.
Fix this by freeing sb->s_fs_info in hfs_kill_super(). |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: iaa - Fix out-of-bounds index in find_empty_iaa_compression_mode
The local variable 'i' is initialized with -EINVAL, but the for loop
immediately overwrites it and -EINVAL is never returned.
If no empty compression mode can be found, the function would return the
out-of-bounds index IAA_COMP_MODES_MAX, which would cause an invalid
array access in add_iaa_compression_mode().
Fix both issues by returning either a valid index or -EINVAL. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtl8xxxu: fix slab-out-of-bounds in rtl8xxxu_sta_add
The driver does not set hw->sta_data_size, which causes mac80211 to
allocate insufficient space for driver private station data in
__sta_info_alloc(). When rtl8xxxu_sta_add() accesses members of
struct rtl8xxxu_sta_info through sta->drv_priv, this results in a
slab-out-of-bounds write.
KASAN report on RISC-V (VisionFive 2) with RTL8192EU adapter:
BUG: KASAN: slab-out-of-bounds in rtl8xxxu_sta_add+0x31c/0x346
Write of size 8 at addr ffffffd6d3e9ae88 by task kworker/u16:0/12
Set hw->sta_data_size to sizeof(struct rtl8xxxu_sta_info) during
probe, similar to how hw->vif_data_size is configured. This ensures
mac80211 allocates sufficient space for the driver's per-station
private data.
Tested on StarFive VisionFive 2 v1.2A board. |
| In the Linux kernel, the following vulnerability has been resolved:
xfs: fix UAF in xchk_btree_check_block_owner
We cannot dereference bs->cur when trying to determine if bs->cur
aliases bs->sc->sa.{bno,rmap}_cur after the latter has been freed.
Fix this by sampling before type before any freeing could happen.
The correct temporal ordering was broken when we removed xfs_btnum_t. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: fix UAF issue for file-backed mounts w/ directio option
[ 9.269940][ T3222] Call trace:
[ 9.269948][ T3222] ext4_file_read_iter+0xac/0x108
[ 9.269979][ T3222] vfs_iocb_iter_read+0xac/0x198
[ 9.269993][ T3222] erofs_fileio_rq_submit+0x12c/0x180
[ 9.270008][ T3222] erofs_fileio_submit_bio+0x14/0x24
[ 9.270030][ T3222] z_erofs_runqueue+0x834/0x8ac
[ 9.270054][ T3222] z_erofs_read_folio+0x120/0x220
[ 9.270083][ T3222] filemap_read_folio+0x60/0x120
[ 9.270102][ T3222] filemap_fault+0xcac/0x1060
[ 9.270119][ T3222] do_pte_missing+0x2d8/0x1554
[ 9.270131][ T3222] handle_mm_fault+0x5ec/0x70c
[ 9.270142][ T3222] do_page_fault+0x178/0x88c
[ 9.270167][ T3222] do_translation_fault+0x38/0x54
[ 9.270183][ T3222] do_mem_abort+0x54/0xac
[ 9.270208][ T3222] el0_da+0x44/0x7c
[ 9.270227][ T3222] el0t_64_sync_handler+0x5c/0xf4
[ 9.270253][ T3222] el0t_64_sync+0x1bc/0x1c0
EROFS may encounter above panic when enabling file-backed mount w/
directio mount option, the root cause is it may suffer UAF in below
race condition:
- z_erofs_read_folio wq s_dio_done_wq
- z_erofs_runqueue
- erofs_fileio_submit_bio
- erofs_fileio_rq_submit
- vfs_iocb_iter_read
- ext4_file_read_iter
- ext4_dio_read_iter
- iomap_dio_rw
: bio was submitted and return -EIOCBQUEUED
- dio_aio_complete_work
- dio_complete
- dio->iocb->ki_complete (erofs_fileio_ki_complete())
- kfree(rq)
: it frees iocb, iocb.ki_filp can be UAF in file_accessed().
- file_accessed
: access NULL file point
Introduce a reference count in struct erofs_fileio_rq, and initialize it
as two, both erofs_fileio_ki_complete() and erofs_fileio_rq_submit() will
decrease reference count, the last one decreasing the reference count
to zero will free rq. |
| In the Linux kernel, the following vulnerability has been resolved:
sched/mmcid: Don't assume CID is CPU owned on mode switch
Shinichiro reported a KASAN UAF, which is actually an out of bounds access
in the MMCID management code.
CPU0 CPU1
T1 runs in userspace
T0: fork(T4) -> Switch to per CPU CID mode
fixup() set MM_CID_TRANSIT on T1/CPU1
T4 exit()
T3 exit()
T2 exit()
T1 exit() switch to per task mode
---> Out of bounds access.
As T1 has not scheduled after T0 set the TRANSIT bit, it exits with the
TRANSIT bit set. sched_mm_cid_remove_user() clears the TRANSIT bit in
the task and drops the CID, but it does not touch the per CPU storage.
That's functionally correct because a CID is only owned by the CPU when
the ONCPU bit is set, which is mutually exclusive with the TRANSIT flag.
Now sched_mm_cid_exit() assumes that the CID is CPU owned because the
prior mode was per CPU. It invokes mm_drop_cid_on_cpu() which clears the
not set ONCPU bit and then invokes clear_bit() with an insanely large
bit number because TRANSIT is set (bit 29).
Prevent that by actually validating that the CID is CPU owned in
mm_drop_cid_on_cpu(). |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: add chann_lock to protect ksmbd_chann_list xarray
ksmbd_chann_list xarray lacks synchronization, allowing use-after-free in
multi-channel sessions (between lookup_chann_list() and ksmbd_chann_del).
Adds rw_semaphore chann_lock to struct ksmbd_session and protects
all xa_load/xa_store/xa_erase accesses. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/exynos: vidi: use ctx->lock to protect struct vidi_context member variables related to memory alloc/free
Exynos Virtual Display driver performs memory alloc/free operations
without lock protection, which easily causes concurrency problem.
For example, use-after-free can occur in race scenario like this:
```
CPU0 CPU1 CPU2
---- ---- ----
vidi_connection_ioctl()
if (vidi->connection) // true
drm_edid = drm_edid_alloc(); // alloc drm_edid
...
ctx->raw_edid = drm_edid;
...
drm_mode_getconnector()
drm_helper_probe_single_connector_modes()
vidi_get_modes()
if (ctx->raw_edid) // true
drm_edid_dup(ctx->raw_edid);
if (!drm_edid) // false
...
vidi_connection_ioctl()
if (vidi->connection) // false
drm_edid_free(ctx->raw_edid); // free drm_edid
...
drm_edid_alloc(drm_edid->edid)
kmemdup(edid); // UAF!!
...
```
To prevent these vulns, at least in vidi_context, member variables related
to memory alloc/free should be protected with ctx->lock. |
| Deserialization of Untrusted Data vulnerability in OpenTextâ„¢ Directory Services allows Object Injection. The vulnerability could lead to remote code execution, denial of service, or
privilege escalation.
This issue affects Directory Services: from 10.5 through 26.1. |
| When BIG-IP AFM or BIG-IP DDoS is provisioned, undisclosed traffic can cause TMM to terminate. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated. |
| The Booking Calendar plugin for WordPress is vulnerable to Insecure Direct Object Reference in all versions up to, and including, 10.14.14 via the handle_ajax_save function due to missing validation on a user controlled key. This makes it possible for authenticated attackers, with Subscriber-level access and above, and booking permissions granted by an Administrator, to modify other users' plugin settings, such as booking calendar display options, which can disrupt the booking calendar functionality for the targeted user. |
| A vulnerability has been found in wren-lang wren up to 0.4.0. This impacts the function printError of the file src/vm/wren_compiler.c of the component Error Message Handler. Such manipulation leads to stack-based buffer overflow. An attack has to be approached locally. The exploit has been disclosed to the public and may be used. The project was informed of the problem early through an issue report but has not responded yet. |
| A flaw was found in OpenShift Service Mesh 2.6.3 and 2.5.6. Rate-limiter avoidance, access-control bypass, CPU and memory exhaustion, and replay attacks may be possible due to improper HTTP header sanitization in Envoy. |
| A vulnerability in Plunet Plunet BusinessManager allows session hijacking, data theft, unauthorized actions on behalf of the user.This issue affects Plunet BusinessManager: 10.15.1. |
| A heap-based buffer overflow problem was found in glib through an incorrect calculation of buffer size in the g_escape_uri_string() function. If the string to escape contains a very large number of unacceptable characters (which would need escaping), the calculation of the length of the escaped string could overflow, leading to a potential write off the end of the newly allocated string. |
| IBM DataStage on Cloud Pak for Data could allow an authenticated user to execute arbitrary commands and gain access to sensitive information due to unrestricted file uploads. |
| IBM DataStage on Cloud Pak for Data 5.1.2 through 5.3.0 returns sensitive information in an HTTP response that could be used to impersonate other users in the system. |
| When requests to the internal network for webhooks are enabled, a server-side request forgery vulnerability in GitLab affecting all versions starting from 10.5 was possible to exploit for an unauthenticated attacker even on a GitLab instance where registration is disabled |