Search

Search Results (331027 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-71187 1 Linux 1 Linux Kernel 2026-02-03 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: sh: rz-dmac: fix device leak on probe failure Make sure to drop the reference taken when looking up the ICU device during probe also on probe failures (e.g. probe deferral).
CVE-2025-71189 1 Linux 1 Linux Kernel 2026-02-03 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: dw: dmamux: fix OF node leak on route allocation failure Make sure to drop the reference taken to the DMA master OF node also on late route allocation failures.
CVE-2025-71191 1 Linux 1 Linux Kernel 2026-02-03 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: at_hdmac: fix device leak on of_dma_xlate() Make sure to drop the reference taken when looking up the DMA platform device during of_dma_xlate() when releasing channel resources. Note that commit 3832b78b3ec2 ("dmaengine: at_hdmac: add missing put_device() call in at_dma_xlate()") fixed the leak in a couple of error paths but the reference is still leaking on successful allocation.
CVE-2026-23016 1 Linux 1 Linux Kernel 2026-02-03 6.1 Medium
In the Linux kernel, the following vulnerability has been resolved: inet: frags: drop fraglist conntrack references Jakub added a warning in nf_conntrack_cleanup_net_list() to make debugging leaked skbs/conntrack references more obvious. syzbot reports this as triggering, and I can also reproduce this via ip_defrag.sh selftest: conntrack cleanup blocked for 60s WARNING: net/netfilter/nf_conntrack_core.c:2512 [..] conntrack clenups gets stuck because there are skbs with still hold nf_conn references via their frag_list. net.core.skb_defer_max=0 makes the hang disappear. Eric Dumazet points out that skb_release_head_state() doesn't follow the fraglist. ip_defrag.sh can only reproduce this problem since commit 6471658dc66c ("udp: use skb_attempt_defer_free()"), but AFAICS this problem could happen with TCP as well if pmtu discovery is off. The relevant problem path for udp is: 1. netns emits fragmented packets 2. nf_defrag_v6_hook reassembles them (in output hook) 3. reassembled skb is tracked (skb owns nf_conn reference) 4. ip6_output refragments 5. refragmented packets also own nf_conn reference (ip6_fragment calls ip6_copy_metadata()) 6. on input path, nf_defrag_v6_hook skips defragmentation: the fragments already have skb->nf_conn attached 7. skbs are reassembled via ipv6_frag_rcv() 8. skb_consume_udp -> skb_attempt_defer_free() -> skb ends up in pcpu freelist, but still has nf_conn reference. Possible solutions: 1 let defrag engine drop nf_conn entry, OR 2 export kick_defer_list_purge() and call it from the conntrack netns exit callback, OR 3 add skb_has_frag_list() check to skb_attempt_defer_free() 2 & 3 also solve ip_defrag.sh hang but share same drawback: Such reassembled skbs, queued to socket, can prevent conntrack module removal until userspace has consumed the packet. While both tcp and udp stack do call nf_reset_ct() before placing skb on socket queue, that function doesn't iterate frag_list skbs. Therefore drop nf_conn entries when they are placed in defrag queue. Keep the nf_conn entry of the first (offset 0) skb so that reassembled skb retains nf_conn entry for sake of TX path. Note that fixes tag is incorrect; it points to the commit introducing the 'ip_defrag.sh reproducible problem': no need to backport this patch to every stable kernel.
CVE-2026-23028 1 Linux 1 Linux Kernel 2026-02-03 N/A
In the Linux kernel, the following vulnerability has been resolved: LoongArch: KVM: Fix kvm_device leak in kvm_ipi_destroy() In kvm_ioctl_create_device(), kvm_device has allocated memory, kvm_device->destroy() seems to be supposed to free its kvm_device struct, but kvm_ipi_destroy() is not currently doing this, that would lead to a memory leak. So, fix it.
CVE-2026-1165 2 Ays-pro, Wordpress 2 Popup Box, Wordpress 2026-02-03 4.3 Medium
The Popup Box plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 6.1.1. This is due to a flawed nonce implementation in the 'publish_unpublish_popupbox' function that verifies a self-created nonce rather than one submitted in the request. This makes it possible for unauthenticated attackers to change the publish status of popups via a forged request, granted they can trick a site administrator into performing an action such as clicking a link.
CVE-2026-1734 1 Zhongbangkeji 1 Crmeb 2026-02-03 5.3 Medium
A security flaw has been discovered in Zhong Bang CRMEB up to 5.6.3. This vulnerability affects unknown code of the file crmeb/app/api/controller/v1/CrontabController.php of the component crontab Endpoint. The manipulation results in missing authorization. The attack can be launched remotely. The exploit has been released to the public and may be used for attacks. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2026-23029 1 Linux 1 Linux Kernel 2026-02-03 N/A
In the Linux kernel, the following vulnerability has been resolved: LoongArch: KVM: Fix kvm_device leak in kvm_eiointc_destroy() In kvm_ioctl_create_device(), kvm_device has allocated memory, kvm_device->destroy() seems to be supposed to free its kvm_device struct, but kvm_eiointc_destroy() is not currently doing this, that would lead to a memory leak. So, fix it.
CVE-2025-71188 1 Linux 1 Linux Kernel 2026-02-03 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: lpc18xx-dmamux: fix device leak on route allocation Make sure to drop the reference taken when looking up the DMA mux platform device during route allocation. Note that holding a reference to a device does not prevent its driver data from going away so there is no point in keeping the reference.
CVE-2026-23020 1 Linux 1 Linux Kernel 2026-02-03 N/A
In the Linux kernel, the following vulnerability has been resolved: net: 3com: 3c59x: fix possible null dereference in vortex_probe1() pdev can be null and free_ring: can be called in 1297 with a null pdev.
CVE-2026-23027 1 Linux 1 Linux Kernel 2026-02-03 N/A
In the Linux kernel, the following vulnerability has been resolved: LoongArch: KVM: Fix kvm_device leak in kvm_pch_pic_destroy() In kvm_ioctl_create_device(), kvm_device has allocated memory, kvm_device->destroy() seems to be supposed to free its kvm_device struct, but kvm_pch_pic_destroy() is not currently doing this, that would lead to a memory leak. So, fix it.
CVE-2026-23031 1 Linux 1 Linux Kernel 2026-02-03 7.0 High
In the Linux kernel, the following vulnerability has been resolved: can: gs_usb: gs_usb_receive_bulk_callback(): fix URB memory leak In gs_can_open(), the URBs for USB-in transfers are allocated, added to the parent->rx_submitted anchor and submitted. In the complete callback gs_usb_receive_bulk_callback(), the URB is processed and resubmitted. In gs_can_close() the URBs are freed by calling usb_kill_anchored_urbs(parent->rx_submitted). However, this does not take into account that the USB framework unanchors the URB before the complete function is called. This means that once an in-URB has been completed, it is no longer anchored and is ultimately not released in gs_can_close(). Fix the memory leak by anchoring the URB in the gs_usb_receive_bulk_callback() to the parent->rx_submitted anchor.
CVE-2026-23038 1 Linux 1 Linux Kernel 2026-02-03 7.0 High
In the Linux kernel, the following vulnerability has been resolved: pnfs/flexfiles: Fix memory leak in nfs4_ff_alloc_deviceid_node() In nfs4_ff_alloc_deviceid_node(), if the allocation for ds_versions fails, the function jumps to the out_scratch label without freeing the already allocated dsaddrs list, leading to a memory leak. Fix this by jumping to the out_err_drain_dsaddrs label, which properly frees the dsaddrs list before cleaning up other resources.
CVE-2026-1530 1 Redhat 1 Satellite 2026-02-03 8.1 High
A flaw was found in fog-kubevirt. This vulnerability allows a remote attacker to perform a Man-in-the-Middle (MITM) attack due to disabled certificate validation. This enables the attacker to intercept and potentially alter sensitive communications between Satellite and OpenShift, resulting in information disclosure and data integrity compromise.
CVE-2026-1518 1 Redhat 1 Build Keycloak 2026-02-03 2.7 Low
A flaw was found in Keycloak’s CIBA feature where insufficient validation of client-configured backchannel notification endpoints could allow blind server-side requests to internal services.
CVE-2020-37063 1 Weird Solutions 1 Tftp Turbo 2026-02-03 7.8 High
TFTP Turbo 4.6.1273 contains an unquoted service path vulnerability that allows local attackers to potentially execute arbitrary code with elevated privileges. Attackers can exploit the unquoted path in the service configuration to inject malicious executables that will be launched with LocalSystem permissions.
CVE-2020-37045 1 Veritas 1 Netbackup 2026-02-03 7.8 High
Veritas NetBackup 7.0 contains an unquoted service path vulnerability in the NetBackup INET Daemon service that allows local users to potentially execute arbitrary code. Attackers can exploit the unquoted path in C:\Program Files\Veritas\NetBackup\bin\bpinetd.exe to inject malicious code that would execute with elevated LocalSystem privileges.
CVE-2021-47920 1 Webmo 1 Job Manager 2026-02-03 5.4 Medium
WebMO Job Manager 20.0 contains a cross-site scripting vulnerability in search parameters that allows remote attackers to inject malicious script code. Attackers can exploit the filterSearch and filterSearchType parameters to perform non-persistent attacks including session hijacking and external redirects.
CVE-2020-37039 1 Winfrigate 1 Frigate 2 2026-02-03 7.5 High
Frigate 2.02 contains a denial of service vulnerability that allows attackers to crash the application by sending oversized input to the command line interface. Attackers can generate a payload of 8000 repeated characters and paste it into the application's command line field to trigger an application crash.
CVE-2020-37052 1 Ubiquiti 1 Aircontrol 2026-02-03 9.8 Critical
AirControl 1.4.2 contains a pre-authentication remote code execution vulnerability that allows unauthenticated attackers to execute arbitrary system commands through malicious Java expression injection. Attackers can exploit the /.seam endpoint by crafting a specially constructed URL with embedded Java expressions to run commands with the application's system privileges.