| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
tracing/osnoise: Fix null-ptr-deref in bitmap_parselist()
A crash was observed with the following output:
BUG: kernel NULL pointer dereference, address: 0000000000000010
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 2 UID: 0 PID: 92 Comm: osnoise_cpus Not tainted 6.17.0-rc4-00201-gd69eb204c255 #138 PREEMPT(voluntary)
RIP: 0010:bitmap_parselist+0x53/0x3e0
Call Trace:
<TASK>
osnoise_cpus_write+0x7a/0x190
vfs_write+0xf8/0x410
? do_sys_openat2+0x88/0xd0
ksys_write+0x60/0xd0
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
This issue can be reproduced by below code:
fd=open("/sys/kernel/debug/tracing/osnoise/cpus", O_WRONLY);
write(fd, "0-2", 0);
When user pass 'count=0' to osnoise_cpus_write(), kmalloc() will return
ZERO_SIZE_PTR (16) and cpulist_parse() treat it as a normal value, which
trigger the null pointer dereference. Add check for the parameter 'count'. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix crash after fscrypt_encrypt_pagecache_blocks() error
The function move_dirty_folio_in_page_array() was created by commit
ce80b76dd327 ("ceph: introduce ceph_process_folio_batch() method") by
moving code from ceph_writepages_start() to this function.
This new function is supposed to return an error code which is checked
by the caller (now ceph_process_folio_batch()), and on error, the
caller invokes redirty_page_for_writepage() and then breaks from the
loop.
However, the refactoring commit has gone wrong, and it by accident, it
always returns 0 (= success) because it first NULLs the pointer and
then returns PTR_ERR(NULL) which is always 0. This means errors are
silently ignored, leaving NULL entries in the page array, which may
later crash the kernel.
The simple solution is to call PTR_ERR() before clearing the pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
igb: Fix NULL pointer dereference in ethtool loopback test
The igb driver currently causes a NULL pointer dereference when executing
the ethtool loopback test. This occurs because there is no associated
q_vector for the test ring when it is set up, as interrupts are typically
not added to the test rings.
Since commit 5ef44b3cb43b removed the napi_id assignment in
__xdp_rxq_info_reg(), there is no longer a need to pass a napi_id to it.
Therefore, simply use 0 as the last parameter. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: ti: am65-cpsw-nuss: Fix null pointer dereference for ndev
In the TX completion packet stage of TI SoCs with CPSW2G instance, which
has single external ethernet port, ndev is accessed without being
initialized if no TX packets have been processed. It results into null
pointer dereference, causing kernel to crash. Fix this by having a check
on the number of TX packets which have been processed. |
| Inadequate encryption strength in .NET, .NET Framework, Visual Studio allows an authorized attacker to disclose information over a network. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: kmem: fix a NULL pointer dereference in obj_stock_flush_required()
KCSAN found an issue in obj_stock_flush_required():
stock->cached_objcg can be reset between the check and dereference:
==================================================================
BUG: KCSAN: data-race in drain_all_stock / drain_obj_stock
write to 0xffff888237c2a2f8 of 8 bytes by task 19625 on cpu 0:
drain_obj_stock+0x408/0x4e0 mm/memcontrol.c:3306
refill_obj_stock+0x9c/0x1e0 mm/memcontrol.c:3340
obj_cgroup_uncharge+0xe/0x10 mm/memcontrol.c:3408
memcg_slab_free_hook mm/slab.h:587 [inline]
__cache_free mm/slab.c:3373 [inline]
__do_kmem_cache_free mm/slab.c:3577 [inline]
kmem_cache_free+0x105/0x280 mm/slab.c:3602
__d_free fs/dcache.c:298 [inline]
dentry_free fs/dcache.c:375 [inline]
__dentry_kill+0x422/0x4a0 fs/dcache.c:621
dentry_kill+0x8d/0x1e0
dput+0x118/0x1f0 fs/dcache.c:913
__fput+0x3bf/0x570 fs/file_table.c:329
____fput+0x15/0x20 fs/file_table.c:349
task_work_run+0x123/0x160 kernel/task_work.c:179
resume_user_mode_work include/linux/resume_user_mode.h:49 [inline]
exit_to_user_mode_loop+0xcf/0xe0 kernel/entry/common.c:171
exit_to_user_mode_prepare+0x6a/0xa0 kernel/entry/common.c:203
__syscall_exit_to_user_mode_work kernel/entry/common.c:285 [inline]
syscall_exit_to_user_mode+0x26/0x140 kernel/entry/common.c:296
do_syscall_64+0x4d/0xc0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x63/0xcd
read to 0xffff888237c2a2f8 of 8 bytes by task 19632 on cpu 1:
obj_stock_flush_required mm/memcontrol.c:3319 [inline]
drain_all_stock+0x174/0x2a0 mm/memcontrol.c:2361
try_charge_memcg+0x6d0/0xd10 mm/memcontrol.c:2703
try_charge mm/memcontrol.c:2837 [inline]
mem_cgroup_charge_skmem+0x51/0x140 mm/memcontrol.c:7290
sock_reserve_memory+0xb1/0x390 net/core/sock.c:1025
sk_setsockopt+0x800/0x1e70 net/core/sock.c:1525
udp_lib_setsockopt+0x99/0x6c0 net/ipv4/udp.c:2692
udp_setsockopt+0x73/0xa0 net/ipv4/udp.c:2817
sock_common_setsockopt+0x61/0x70 net/core/sock.c:3668
__sys_setsockopt+0x1c3/0x230 net/socket.c:2271
__do_sys_setsockopt net/socket.c:2282 [inline]
__se_sys_setsockopt net/socket.c:2279 [inline]
__x64_sys_setsockopt+0x66/0x80 net/socket.c:2279
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
value changed: 0xffff8881382d52c0 -> 0xffff888138893740
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 19632 Comm: syz-executor.0 Not tainted 6.3.0-rc2-syzkaller-00387-g534293368afa #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/02/2023
Fix it by using READ_ONCE()/WRITE_ONCE() for all accesses to
stock->cached_objcg. |
| Improper link resolution before file access ('link following') in .NET allows an authorized attacker to elevate privileges locally. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix NULL pointer dereference in smb2_get_info_filesystem()
If share is , share->path is NULL and it cause NULL pointer
dereference issue. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: fix multipath crash caused by flush request when blktrace is enabled
The flush request initialized by blk_kick_flush has NULL bio,
and it may be dealt with nvme_end_req during io completion.
When blktrace is enabled, nvme_trace_bio_complete with multipath
activated trying to access NULL pointer bio from flush request
results in the following crash:
[ 2517.831677] BUG: kernel NULL pointer dereference, address: 000000000000001a
[ 2517.835213] #PF: supervisor read access in kernel mode
[ 2517.838724] #PF: error_code(0x0000) - not-present page
[ 2517.842222] PGD 7b2d51067 P4D 0
[ 2517.845684] Oops: 0000 [#1] SMP NOPTI
[ 2517.849125] CPU: 2 PID: 732 Comm: kworker/2:1H Kdump: loaded Tainted: G S 5.15.67-0.cl9.x86_64 #1
[ 2517.852723] Hardware name: XFUSION 2288H V6/BC13MBSBC, BIOS 1.13 07/27/2022
[ 2517.856358] Workqueue: nvme_tcp_wq nvme_tcp_io_work [nvme_tcp]
[ 2517.859993] RIP: 0010:blk_add_trace_bio_complete+0x6/0x30
[ 2517.863628] Code: 1f 44 00 00 48 8b 46 08 31 c9 ba 04 00 10 00 48 8b 80 50 03 00 00 48 8b 78 50 e9 e5 fe ff ff 0f 1f 44 00 00 41 54 49 89 f4 55 <0f> b6 7a 1a 48 89 d5 e8 3e 1c 2b 00 48 89 ee 4c 89 e7 5d 89 c1 ba
[ 2517.871269] RSP: 0018:ff7f6a008d9dbcd0 EFLAGS: 00010286
[ 2517.875081] RAX: ff3d5b4be00b1d50 RBX: 0000000002040002 RCX: ff3d5b0a270f2000
[ 2517.878966] RDX: 0000000000000000 RSI: ff3d5b0b021fb9f8 RDI: 0000000000000000
[ 2517.882849] RBP: ff3d5b0b96a6fa00 R08: 0000000000000001 R09: 0000000000000000
[ 2517.886718] R10: 000000000000000c R11: 000000000000000c R12: ff3d5b0b021fb9f8
[ 2517.890575] R13: 0000000002000000 R14: ff3d5b0b021fb1b0 R15: 0000000000000018
[ 2517.894434] FS: 0000000000000000(0000) GS:ff3d5b42bfc80000(0000) knlGS:0000000000000000
[ 2517.898299] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 2517.902157] CR2: 000000000000001a CR3: 00000004f023e005 CR4: 0000000000771ee0
[ 2517.906053] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 2517.909930] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 2517.913761] PKRU: 55555554
[ 2517.917558] Call Trace:
[ 2517.921294] <TASK>
[ 2517.924982] nvme_complete_rq+0x1c3/0x1e0 [nvme_core]
[ 2517.928715] nvme_tcp_recv_pdu+0x4d7/0x540 [nvme_tcp]
[ 2517.932442] nvme_tcp_recv_skb+0x4f/0x240 [nvme_tcp]
[ 2517.936137] ? nvme_tcp_recv_pdu+0x540/0x540 [nvme_tcp]
[ 2517.939830] tcp_read_sock+0x9c/0x260
[ 2517.943486] nvme_tcp_try_recv+0x65/0xa0 [nvme_tcp]
[ 2517.947173] nvme_tcp_io_work+0x64/0x90 [nvme_tcp]
[ 2517.950834] process_one_work+0x1e8/0x390
[ 2517.954473] worker_thread+0x53/0x3c0
[ 2517.958069] ? process_one_work+0x390/0x390
[ 2517.961655] kthread+0x10c/0x130
[ 2517.965211] ? set_kthread_struct+0x40/0x40
[ 2517.968760] ret_from_fork+0x1f/0x30
[ 2517.972285] </TASK>
To avoid this situation, add a NULL check for req->bio before
calling trace_block_bio_complete. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSv4.2: Rework scratch handling for READ_PLUS (again)
I found that the read code might send multiple requests using the same
nfs_pgio_header, but nfs4_proc_read_setup() is only called once. This is
how we ended up occasionally double-freeing the scratch buffer, but also
means we set a NULL pointer but non-zero length to the xdr scratch
buffer. This results in an oops the first time decoding needs to copy
something to scratch, which frequently happens when decoding READ_PLUS
hole segments.
I fix this by moving scratch handling into the pageio read code. I
provide a function to allocate scratch space for decoding read replies,
and free the scratch buffer when the nfs_pgio_header is freed. |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: da9063: better fix null deref with partial DT
Two versions of the original patch were sent but V1 was merged instead
of V2 due to a mistake.
So update to V2.
The advantage of V2 is that it completely avoids dereferencing the pointer,
even just to take the address, which may fix problems with some compilers.
Both versions work on my gcc 9.4 but use the safer one. |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: designware: Fix handling of real but unexpected device interrupts
Commit c7b79a752871 ("mfd: intel-lpss: Add Intel Alder Lake PCH-S PCI
IDs") caused a regression on certain Gigabyte motherboards for Intel
Alder Lake-S where system crashes to NULL pointer dereference in
i2c_dw_xfer_msg() when system resumes from S3 sleep state ("deep").
I was able to debug the issue on Gigabyte Z690 AORUS ELITE and made
following notes:
- Issue happens when resuming from S3 but not when resuming from
"s2idle"
- PCI device 00:15.0 == i2c_designware.0 is already in D0 state when
system enters into pci_pm_resume_noirq() while all other i2c_designware
PCI devices are in D3. Devices were runtime suspended and in D3 prior
entering into suspend
- Interrupt comes after pci_pm_resume_noirq() when device interrupts are
re-enabled
- According to register dump the interrupt really comes from the
i2c_designware.0. Controller is enabled, I2C target address register
points to a one detectable I2C device address 0x60 and the
DW_IC_RAW_INTR_STAT register START_DET, STOP_DET, ACTIVITY and
TX_EMPTY bits are set indicating completed I2C transaction.
My guess is that the firmware uses this controller to communicate with
an on-board I2C device during resume but does not disable the controller
before giving control to an operating system.
I was told the UEFI update fixes this but never the less it revealed the
driver is not ready to handle TX_EMPTY (or RX_FULL) interrupt when device
is supposed to be idle and state variables are not set (especially the
dev->msgs pointer which may point to NULL or stale old data).
Introduce a new software status flag STATUS_ACTIVE indicating when the
controller is active in driver point of view. Now treat all interrupts
that occur when is not set as unexpected and mask all interrupts from
the controller. |
| Improper Limitation of a Pathname 'Path Traversal') vulnerability in Algosec Firewall Analyzer on Linux, 64 bit allows an authenticated user to upload files to a restricted directory leading to code injection. This issue affects Algosec Firewall Analyzer: A33.0 (up to build 320), A33.10 (up to build 210). |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921: resource leaks at mt7921_check_offload_capability()
Fixed coverity issue with resource leaks at variable "fw" going out of
scope leaks the storage it points to mt7921_check_offload_capability().
Addresses-Coverity-ID: 1527806 ("Resource leaks") |
| In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Fix use-after-free in acpi_ut_copy_ipackage_to_ipackage()
There is an use-after-free reported by KASAN:
BUG: KASAN: use-after-free in acpi_ut_remove_reference+0x3b/0x82
Read of size 1 at addr ffff888112afc460 by task modprobe/2111
CPU: 0 PID: 2111 Comm: modprobe Not tainted 6.1.0-rc7-dirty
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
Call Trace:
<TASK>
kasan_report+0xae/0xe0
acpi_ut_remove_reference+0x3b/0x82
acpi_ut_copy_iobject_to_iobject+0x3be/0x3d5
acpi_ds_store_object_to_local+0x15d/0x3a0
acpi_ex_store+0x78d/0x7fd
acpi_ex_opcode_1A_1T_1R+0xbe4/0xf9b
acpi_ps_parse_aml+0x217/0x8d5
...
</TASK>
The root cause of the problem is that the acpi_operand_object
is freed when acpi_ut_walk_package_tree() fails in
acpi_ut_copy_ipackage_to_ipackage(), lead to repeated release in
acpi_ut_copy_iobject_to_iobject(). The problem was introduced
by "8aa5e56eeb61" commit, this commit is to fix memory leak in
acpi_ut_copy_iobject_to_iobject(), repeatedly adding remove
operation, lead to "acpi_operand_object" used after free.
Fix it by removing acpi_ut_remove_reference() in
acpi_ut_copy_ipackage_to_ipackage(). acpi_ut_copy_ipackage_to_ipackage()
is called to copy an internal package object into another internal
package object, when it fails, the memory of acpi_operand_object
should be freed by the caller. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: libsas: Fix use-after-free bug in smp_execute_task_sg()
When executing SMP task failed, the smp_execute_task_sg() calls del_timer()
to delete "slow_task->timer". However, if the timer handler
sas_task_internal_timedout() is running, the del_timer() in
smp_execute_task_sg() will not stop it and a UAF will happen. The process
is shown below:
(thread 1) | (thread 2)
smp_execute_task_sg() | sas_task_internal_timedout()
... |
del_timer() |
... | ...
sas_free_task(task) |
kfree(task->slow_task) //FREE|
| task->slow_task->... //USE
Fix by calling del_timer_sync() in smp_execute_task_sg(), which makes sure
the timer handler have finished before the "task->slow_task" is
deallocated. |
| In the Linux kernel, the following vulnerability has been resolved:
rpmsg: char: Avoid double destroy of default endpoint
The rpmsg_dev_remove() in rpmsg_core is the place for releasing
this default endpoint.
So need to avoid destroying the default endpoint in
rpmsg_chrdev_eptdev_destroy(), this should be the same as
rpmsg_eptdev_release(). Otherwise there will be double destroy
issue that ept->refcount report warning:
refcount_t: underflow; use-after-free.
Call trace:
refcount_warn_saturate+0xf8/0x150
virtio_rpmsg_destroy_ept+0xd4/0xec
rpmsg_dev_remove+0x60/0x70
The issue can be reproduced by stopping remoteproc before
closing the /dev/rpmsgX. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: hisilicon/hpre - fix resource leak in remove process
In hpre_remove(), when the disable operation of qm sriov failed,
the following logic should continue to be executed to release the
remaining resources that have been allocated, instead of returning
directly, otherwise there will be resource leakage. |
| In the Linux kernel, the following vulnerability has been resolved:
genetlink: fix genl_bind() invoking bind() after -EPERM
Per family bind/unbind callbacks were introduced to allow families
to track multicast group consumer presence, e.g. to start or stop
producing events depending on listeners.
However, in genl_bind() the bind() callback was invoked even if
capability checks failed and ret was set to -EPERM. This means that
callbacks could run on behalf of unauthorized callers while the
syscall still returned failure to user space.
Fix this by only invoking bind() after "if (ret) break;" check
i.e. after permission checks have succeeded. |
| In the Linux kernel, the following vulnerability has been resolved:
can: j1939: implement NETDEV_UNREGISTER notification handler
syzbot is reporting
unregister_netdevice: waiting for vcan0 to become free. Usage count = 2
problem, for j1939 protocol did not have NETDEV_UNREGISTER notification
handler for undoing changes made by j1939_sk_bind().
Commit 25fe97cb7620 ("can: j1939: move j1939_priv_put() into sk_destruct
callback") expects that a call to j1939_priv_put() can be unconditionally
delayed until j1939_sk_sock_destruct() is called. But we need to call
j1939_priv_put() against an extra ref held by j1939_sk_bind() call
(as a part of undoing changes made by j1939_sk_bind()) as soon as
NETDEV_UNREGISTER notification fires (i.e. before j1939_sk_sock_destruct()
is called via j1939_sk_release()). Otherwise, the extra ref on "struct
j1939_priv" held by j1939_sk_bind() call prevents "struct net_device" from
dropping the usage count to 1; making it impossible for
unregister_netdevice() to continue.
[mkl: remove space in front of label] |