CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
can: xilinx_can: xcan_write_frame(): fix use-after-free of transmitted SKB
can_put_echo_skb() takes ownership of the SKB and it may be freed
during or after the call.
However, xilinx_can xcan_write_frame() keeps using SKB after the call.
Fix that by only calling can_put_echo_skb() after the code is done
touching the SKB.
The tx_lock is held for the entire xcan_write_frame() execution and
also on the can_get_echo_skb() side so the order of operations does not
matter.
An earlier fix commit 3d3c817c3a40 ("can: xilinx_can: Fix usage of skb
memory") did not move the can_put_echo_skb() call far enough.
[mkl: add "commit" in front of sha1 in patch description]
[mkl: fix indention] |
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: ti: edma: Fix memory allocation size for queue_priority_map
Fix a critical memory allocation bug in edma_setup_from_hw() where
queue_priority_map was allocated with insufficient memory. The code
declared queue_priority_map as s8 (*)[2] (pointer to array of 2 s8),
but allocated memory using sizeof(s8) instead of the correct size.
This caused out-of-bounds memory writes when accessing:
queue_priority_map[i][0] = i;
queue_priority_map[i][1] = i;
The bug manifested as kernel crashes with "Oops - undefined instruction"
on ARM platforms (BeagleBoard-X15) during EDMA driver probe, as the
memory corruption triggered kernel hardening features on Clang.
Change the allocation to use sizeof(*queue_priority_map) which
automatically gets the correct size for the 2D array structure. |
In the Linux kernel, the following vulnerability has been resolved:
loop: Avoid updating block size under exclusive owner
Syzbot came up with a reproducer where a loop device block size is
changed underneath a mounted filesystem. This causes a mismatch between
the block device block size and the block size stored in the superblock
causing confusion in various places such as fs/buffer.c. The particular
issue triggered by syzbot was a warning in __getblk_slow() due to
requested buffer size not matching block device block size.
Fix the problem by getting exclusive hold of the loop device to change
its block size. This fails if somebody (such as filesystem) has already
an exclusive ownership of the block device and thus prevents modifying
the loop device under some exclusive owner which doesn't expect it. |
In the Linux kernel, the following vulnerability has been resolved:
af_unix: Don't leave consecutive consumed OOB skbs.
Jann Horn reported a use-after-free in unix_stream_read_generic().
The following sequences reproduce the issue:
$ python3
from socket import *
s1, s2 = socketpair(AF_UNIX, SOCK_STREAM)
s1.send(b'x', MSG_OOB)
s2.recv(1, MSG_OOB) # leave a consumed OOB skb
s1.send(b'y', MSG_OOB)
s2.recv(1, MSG_OOB) # leave a consumed OOB skb
s1.send(b'z', MSG_OOB)
s2.recv(1) # recv 'z' illegally
s2.recv(1, MSG_OOB) # access 'z' skb (use-after-free)
Even though a user reads OOB data, the skb holding the data stays on
the recv queue to mark the OOB boundary and break the next recv().
After the last send() in the scenario above, the sk2's recv queue has
2 leading consumed OOB skbs and 1 real OOB skb.
Then, the following happens during the next recv() without MSG_OOB
1. unix_stream_read_generic() peeks the first consumed OOB skb
2. manage_oob() returns the next consumed OOB skb
3. unix_stream_read_generic() fetches the next not-yet-consumed OOB skb
4. unix_stream_read_generic() reads and frees the OOB skb
, and the last recv(MSG_OOB) triggers KASAN splat.
The 3. above occurs because of the SO_PEEK_OFF code, which does not
expect unix_skb_len(skb) to be 0, but this is true for such consumed
OOB skbs.
while (skip >= unix_skb_len(skb)) {
skip -= unix_skb_len(skb);
skb = skb_peek_next(skb, &sk->sk_receive_queue);
...
}
In addition to this use-after-free, there is another issue that
ioctl(SIOCATMARK) does not function properly with consecutive consumed
OOB skbs.
So, nothing good comes out of such a situation.
Instead of complicating manage_oob(), ioctl() handling, and the next
ECONNRESET fix by introducing a loop for consecutive consumed OOB skbs,
let's not leave such consecutive OOB unnecessarily.
Now, while receiving an OOB skb in unix_stream_recv_urg(), if its
previous skb is a consumed OOB skb, it is freed.
[0]:
BUG: KASAN: slab-use-after-free in unix_stream_read_actor (net/unix/af_unix.c:3027)
Read of size 4 at addr ffff888106ef2904 by task python3/315
CPU: 2 UID: 0 PID: 315 Comm: python3 Not tainted 6.16.0-rc1-00407-gec315832f6f9 #8 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-4.fc42 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:122)
print_report (mm/kasan/report.c:409 mm/kasan/report.c:521)
kasan_report (mm/kasan/report.c:636)
unix_stream_read_actor (net/unix/af_unix.c:3027)
unix_stream_read_generic (net/unix/af_unix.c:2708 net/unix/af_unix.c:2847)
unix_stream_recvmsg (net/unix/af_unix.c:3048)
sock_recvmsg (net/socket.c:1063 (discriminator 20) net/socket.c:1085 (discriminator 20))
__sys_recvfrom (net/socket.c:2278)
__x64_sys_recvfrom (net/socket.c:2291 (discriminator 1) net/socket.c:2287 (discriminator 1) net/socket.c:2287 (discriminator 1))
do_syscall_64 (arch/x86/entry/syscall_64.c:63 (discriminator 1) arch/x86/entry/syscall_64.c:94 (discriminator 1))
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
RIP: 0033:0x7f8911fcea06
Code: 5d e8 41 8b 93 08 03 00 00 59 5e 48 83 f8 fc 75 19 83 e2 39 83 fa 08 75 11 e8 26 ff ff ff 66 0f 1f 44 00 00 48 8b 45 10 0f 05 <48> 8b 5d f8 c9 c3 0f 1f 40 00 f3 0f 1e fa 55 48 89 e5 48 83 ec 08
RSP: 002b:00007fffdb0dccb0 EFLAGS: 00000202 ORIG_RAX: 000000000000002d
RAX: ffffffffffffffda RBX: 00007fffdb0dcdc8 RCX: 00007f8911fcea06
RDX: 0000000000000001 RSI: 00007f8911a5e060 RDI: 0000000000000006
RBP: 00007fffdb0dccd0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000202 R12: 00007f89119a7d20
R13: ffffffffc4653600 R14: 0000000000000000 R15: 0000000000000000
</TASK>
Allocated by task 315:
kasan_save_stack (mm/kasan/common.c:48)
kasan_save_track (mm/kasan/common.c:60 (discriminator 1) mm/kasan/common.c:69 (discriminator 1))
__kasan_slab_alloc (mm/kasan/common.c:348)
kmem_cache_alloc_
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
mm/migrate_device: don't add folio to be freed to LRU in migrate_device_finalize()
If migration succeeded, we called
folio_migrate_flags()->mem_cgroup_migrate() to migrate the memcg from the
old to the new folio. This will set memcg_data of the old folio to 0.
Similarly, if migration failed, memcg_data of the dst folio is left unset.
If we call folio_putback_lru() on such folios (memcg_data == 0), we will
add the folio to be freed to the LRU, making memcg code unhappy. Running
the hmm selftests:
# ./hmm-tests
...
# RUN hmm.hmm_device_private.migrate ...
[ 102.078007][T14893] page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x7ff27d200 pfn:0x13cc00
[ 102.079974][T14893] anon flags: 0x17ff00000020018(uptodate|dirty|swapbacked|node=0|zone=2|lastcpupid=0x7ff)
[ 102.082037][T14893] raw: 017ff00000020018 dead000000000100 dead000000000122 ffff8881353896c9
[ 102.083687][T14893] raw: 00000007ff27d200 0000000000000000 00000001ffffffff 0000000000000000
[ 102.085331][T14893] page dumped because: VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled())
[ 102.087230][T14893] ------------[ cut here ]------------
[ 102.088279][T14893] WARNING: CPU: 0 PID: 14893 at ./include/linux/memcontrol.h:726 folio_lruvec_lock_irqsave+0x10e/0x170
[ 102.090478][T14893] Modules linked in:
[ 102.091244][T14893] CPU: 0 UID: 0 PID: 14893 Comm: hmm-tests Not tainted 6.13.0-09623-g6c216bc522fd #151
[ 102.093089][T14893] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014
[ 102.094848][T14893] RIP: 0010:folio_lruvec_lock_irqsave+0x10e/0x170
[ 102.096104][T14893] Code: ...
[ 102.099908][T14893] RSP: 0018:ffffc900236c37b0 EFLAGS: 00010293
[ 102.101152][T14893] RAX: 0000000000000000 RBX: ffffea0004f30000 RCX: ffffffff8183f426
[ 102.102684][T14893] RDX: ffff8881063cb880 RSI: ffffffff81b8117f RDI: ffff8881063cb880
[ 102.104227][T14893] RBP: 0000000000000000 R08: 0000000000000005 R09: 0000000000000000
[ 102.105757][T14893] R10: 0000000000000001 R11: 0000000000000002 R12: ffffc900236c37d8
[ 102.107296][T14893] R13: ffff888277a2bcb0 R14: 000000000000001f R15: 0000000000000000
[ 102.108830][T14893] FS: 00007ff27dbdd740(0000) GS:ffff888277a00000(0000) knlGS:0000000000000000
[ 102.110643][T14893] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 102.111924][T14893] CR2: 00007ff27d400000 CR3: 000000010866e000 CR4: 0000000000750ef0
[ 102.113478][T14893] PKRU: 55555554
[ 102.114172][T14893] Call Trace:
[ 102.114805][T14893] <TASK>
[ 102.115397][T14893] ? folio_lruvec_lock_irqsave+0x10e/0x170
[ 102.116547][T14893] ? __warn.cold+0x110/0x210
[ 102.117461][T14893] ? folio_lruvec_lock_irqsave+0x10e/0x170
[ 102.118667][T14893] ? report_bug+0x1b9/0x320
[ 102.119571][T14893] ? handle_bug+0x54/0x90
[ 102.120494][T14893] ? exc_invalid_op+0x17/0x50
[ 102.121433][T14893] ? asm_exc_invalid_op+0x1a/0x20
[ 102.122435][T14893] ? __wake_up_klogd.part.0+0x76/0xd0
[ 102.123506][T14893] ? dump_page+0x4f/0x60
[ 102.124352][T14893] ? folio_lruvec_lock_irqsave+0x10e/0x170
[ 102.125500][T14893] folio_batch_move_lru+0xd4/0x200
[ 102.126577][T14893] ? __pfx_lru_add+0x10/0x10
[ 102.127505][T14893] __folio_batch_add_and_move+0x391/0x720
[ 102.128633][T14893] ? __pfx_lru_add+0x10/0x10
[ 102.129550][T14893] folio_putback_lru+0x16/0x80
[ 102.130564][T14893] migrate_device_finalize+0x9b/0x530
[ 102.131640][T14893] dmirror_migrate_to_device.constprop.0+0x7c5/0xad0
[ 102.133047][T14893] dmirror_fops_unlocked_ioctl+0x89b/0xc80
Likely, nothing else goes wrong: putting the last folio reference will
remove the folio from the LRU again. So besides memcg complaining, adding
the folio to be freed to the LRU is just an unnecessary step.
The new flow resembles what we have in migrate_folio_move(): add the dst
to the lru, rem
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
scsi: ses: Handle enclosure with just a primary component gracefully
This reverts commit 3fe97ff3d949 ("scsi: ses: Don't attach if enclosure
has no components") and introduces proper handling of case where there are
no detected secondary components, but primary component (enumerated in
num_enclosures) does exist. That fix was originally proposed by Ding Hui
<dinghui@sangfor.com.cn>.
Completely ignoring devices that have one primary enclosure and no
secondary one results in ses_intf_add() bailing completely
scsi 2:0:0:254: enclosure has no enumerated components
scsi 2:0:0:254: Failed to bind enclosure -12ven in valid configurations such
even on valid configurations with 1 primary and 0 secondary enclosures as
below:
# sg_ses /dev/sg0
3PARdata SES 3321
Supported diagnostic pages:
Supported Diagnostic Pages [sdp] [0x0]
Configuration (SES) [cf] [0x1]
Short Enclosure Status (SES) [ses] [0x8]
# sg_ses -p cf /dev/sg0
3PARdata SES 3321
Configuration diagnostic page:
number of secondary subenclosures: 0
generation code: 0x0
enclosure descriptor list
Subenclosure identifier: 0 [primary]
relative ES process id: 0, number of ES processes: 1
number of type descriptor headers: 1
enclosure logical identifier (hex): 20000002ac02068d
enclosure vendor: 3PARdata product: VV rev: 3321
type descriptor header and text list
Element type: Unspecified, subenclosure id: 0
number of possible elements: 1
The changelog for the original fix follows
=====
We can get a crash when disconnecting the iSCSI session,
the call trace like this:
[ffff00002a00fb70] kfree at ffff00000830e224
[ffff00002a00fba0] ses_intf_remove at ffff000001f200e4
[ffff00002a00fbd0] device_del at ffff0000086b6a98
[ffff00002a00fc50] device_unregister at ffff0000086b6d58
[ffff00002a00fc70] __scsi_remove_device at ffff00000870608c
[ffff00002a00fca0] scsi_remove_device at ffff000008706134
[ffff00002a00fcc0] __scsi_remove_target at ffff0000087062e4
[ffff00002a00fd10] scsi_remove_target at ffff0000087064c0
[ffff00002a00fd70] __iscsi_unbind_session at ffff000001c872c4
[ffff00002a00fdb0] process_one_work at ffff00000810f35c
[ffff00002a00fe00] worker_thread at ffff00000810f648
[ffff00002a00fe70] kthread at ffff000008116e98
In ses_intf_add, components count could be 0, and kcalloc 0 size scomp,
but not saved in edev->component[i].scratch
In this situation, edev->component[0].scratch is an invalid pointer,
when kfree it in ses_intf_remove_enclosure, a crash like above would happen
The call trace also could be other random cases when kfree cannot catch
the invalid pointer
We should not use edev->component[] array when the components count is 0
We also need check index when use edev->component[] array in
ses_enclosure_data_process
===== |
In the Linux kernel, the following vulnerability has been resolved:
ceph: avoid putting the realm twice when decoding snaps fails
When decoding the snaps fails it maybe leaving the 'first_realm'
and 'realm' pointing to the same snaprealm memory. And then it'll
put it twice and could cause random use-after-free, BUG_ON, etc
issues. |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: topology: Fix references to freed memory
Most users after parsing a topology file, release memory used by it, so
having pointer references directly into topology file contents is wrong.
Use devm_kmemdup(), to allocate memory as needed. |
In the Linux kernel, the following vulnerability has been resolved:
spi: cadence: Fix out-of-bounds array access in cdns_mrvl_xspi_setup_clock()
If requested_clk > 128, cdns_mrvl_xspi_setup_clock() iterates over the
entire cdns_mrvl_xspi_clk_div_list array without breaking out early,
causing 'i' to go beyond the array bounds.
Fix that by stopping the loop when it gets to the last entry, clamping
the clock to the minimum 6.25 MHz.
Fixes the following warning with an UBSAN kernel:
vmlinux.o: warning: objtool: cdns_mrvl_xspi_setup_clock: unexpected end of section .text.cdns_mrvl_xspi_setup_clock |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix slab-use-after-free on hdcp_work
[Why]
A slab-use-after-free is reported when HDCP is destroyed but the
property_validate_dwork queue is still running.
[How]
Cancel the delayed work when destroying workqueue.
(cherry picked from commit 725a04ba5a95e89c89633d4322430cfbca7ce128) |
In the Linux kernel, the following vulnerability has been resolved:
ppp: Fix KMSAN uninit-value warning with bpf
Syzbot caught an "KMSAN: uninit-value" warning [1], which is caused by the
ppp driver not initializing a 2-byte header when using socket filter.
The following code can generate a PPP filter BPF program:
'''
struct bpf_program fp;
pcap_t *handle;
handle = pcap_open_dead(DLT_PPP_PPPD, 65535);
pcap_compile(handle, &fp, "ip and outbound", 0, 0);
bpf_dump(&fp, 1);
'''
Its output is:
'''
(000) ldh [2]
(001) jeq #0x21 jt 2 jf 5
(002) ldb [0]
(003) jeq #0x1 jt 4 jf 5
(004) ret #65535
(005) ret #0
'''
Wen can find similar code at the following link:
https://github.com/ppp-project/ppp/blob/master/pppd/options.c#L1680
The maintainer of this code repository is also the original maintainer
of the ppp driver.
As you can see the BPF program skips 2 bytes of data and then reads the
'Protocol' field to determine if it's an IP packet. Then it read the first
byte of the first 2 bytes to determine the direction.
The issue is that only the first byte indicating direction is initialized
in current ppp driver code while the second byte is not initialized.
For normal BPF programs generated by libpcap, uninitialized data won't be
used, so it's not a problem. However, for carefully crafted BPF programs,
such as those generated by syzkaller [2], which start reading from offset
0, the uninitialized data will be used and caught by KMSAN.
[1] https://syzkaller.appspot.com/bug?extid=853242d9c9917165d791
[2] https://syzkaller.appspot.com/text?tag=ReproC&x=11994913980000 |
In the Linux kernel, the following vulnerability has been resolved:
vlan: enforce underlying device type
Currently, VLAN devices can be created on top of non-ethernet devices.
Besides the fact that it doesn't make much sense, this also causes a
bug which leaks the address of a kernel function to usermode.
When creating a VLAN device, we initialize GARP (garp_init_applicant)
and MRP (mrp_init_applicant) for the underlying device.
As part of the initialization process, we add the multicast address of
each applicant to the underlying device, by calling dev_mc_add.
__dev_mc_add uses dev->addr_len to determine the length of the new
multicast address.
This causes an out-of-bounds read if dev->addr_len is greater than 6,
since the multicast addresses provided by GARP and MRP are only 6
bytes long.
This behaviour can be reproduced using the following commands:
ip tunnel add gretest mode ip6gre local ::1 remote ::2 dev lo
ip l set up dev gretest
ip link add link gretest name vlantest type vlan id 100
Then, the following command will display the address of garp_pdu_rcv:
ip maddr show | grep 01:80:c2:00:00:21
Fix the bug by enforcing the type of the underlying device during VLAN
device initialization. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Fix possible crash when setting up bsg fails
If bsg_setup_queue() fails, the bsg_queue is assigned a non-NULL value.
Consequently, in mpi3mr_bsg_exit(), the condition "if(!mrioc->bsg_queue)"
will not be satisfied, preventing execution from entering
bsg_remove_queue(), which could lead to the following crash:
BUG: kernel NULL pointer dereference, address: 000000000000041c
Call Trace:
<TASK>
mpi3mr_bsg_exit+0x1f/0x50 [mpi3mr]
mpi3mr_remove+0x6f/0x340 [mpi3mr]
pci_device_remove+0x3f/0xb0
device_release_driver_internal+0x19d/0x220
unbind_store+0xa4/0xb0
kernfs_fop_write_iter+0x11f/0x200
vfs_write+0x1fc/0x3e0
ksys_write+0x67/0xe0
do_syscall_64+0x38/0x80
entry_SYSCALL_64_after_hwframe+0x78/0xe2 |
In the Linux kernel, the following vulnerability has been resolved:
vxlan: Fix uninit-value in vxlan_vnifilter_dump()
KMSAN reported an uninit-value access in vxlan_vnifilter_dump() [1].
If the length of the netlink message payload is less than
sizeof(struct tunnel_msg), vxlan_vnifilter_dump() accesses bytes
beyond the message. This can lead to uninit-value access. Fix this by
returning an error in such situations.
[1]
BUG: KMSAN: uninit-value in vxlan_vnifilter_dump+0x328/0x920 drivers/net/vxlan/vxlan_vnifilter.c:422
vxlan_vnifilter_dump+0x328/0x920 drivers/net/vxlan/vxlan_vnifilter.c:422
rtnl_dumpit+0xd5/0x2f0 net/core/rtnetlink.c:6786
netlink_dump+0x93e/0x15f0 net/netlink/af_netlink.c:2317
__netlink_dump_start+0x716/0xd60 net/netlink/af_netlink.c:2432
netlink_dump_start include/linux/netlink.h:340 [inline]
rtnetlink_dump_start net/core/rtnetlink.c:6815 [inline]
rtnetlink_rcv_msg+0x1256/0x14a0 net/core/rtnetlink.c:6882
netlink_rcv_skb+0x467/0x660 net/netlink/af_netlink.c:2542
rtnetlink_rcv+0x35/0x40 net/core/rtnetlink.c:6944
netlink_unicast_kernel net/netlink/af_netlink.c:1321 [inline]
netlink_unicast+0xed6/0x1290 net/netlink/af_netlink.c:1347
netlink_sendmsg+0x1092/0x1230 net/netlink/af_netlink.c:1891
sock_sendmsg_nosec net/socket.c:711 [inline]
__sock_sendmsg+0x330/0x3d0 net/socket.c:726
____sys_sendmsg+0x7f4/0xb50 net/socket.c:2583
___sys_sendmsg+0x271/0x3b0 net/socket.c:2637
__sys_sendmsg net/socket.c:2669 [inline]
__do_sys_sendmsg net/socket.c:2674 [inline]
__se_sys_sendmsg net/socket.c:2672 [inline]
__x64_sys_sendmsg+0x211/0x3e0 net/socket.c:2672
x64_sys_call+0x3878/0x3d90 arch/x86/include/generated/asm/syscalls_64.h:47
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xd9/0x1d0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was created at:
slab_post_alloc_hook mm/slub.c:4110 [inline]
slab_alloc_node mm/slub.c:4153 [inline]
kmem_cache_alloc_node_noprof+0x800/0xe80 mm/slub.c:4205
kmalloc_reserve+0x13b/0x4b0 net/core/skbuff.c:587
__alloc_skb+0x347/0x7d0 net/core/skbuff.c:678
alloc_skb include/linux/skbuff.h:1323 [inline]
netlink_alloc_large_skb+0xa5/0x280 net/netlink/af_netlink.c:1196
netlink_sendmsg+0xac9/0x1230 net/netlink/af_netlink.c:1866
sock_sendmsg_nosec net/socket.c:711 [inline]
__sock_sendmsg+0x330/0x3d0 net/socket.c:726
____sys_sendmsg+0x7f4/0xb50 net/socket.c:2583
___sys_sendmsg+0x271/0x3b0 net/socket.c:2637
__sys_sendmsg net/socket.c:2669 [inline]
__do_sys_sendmsg net/socket.c:2674 [inline]
__se_sys_sendmsg net/socket.c:2672 [inline]
__x64_sys_sendmsg+0x211/0x3e0 net/socket.c:2672
x64_sys_call+0x3878/0x3d90 arch/x86/include/generated/asm/syscalls_64.h:47
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xd9/0x1d0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
CPU: 0 UID: 0 PID: 30991 Comm: syz.4.10630 Not tainted 6.12.0-10694-gc44daa7e3c73 #29
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014 |
In the Linux kernel, the following vulnerability has been resolved:
fs/proc: fix softlockup in __read_vmcore (part 2)
Since commit 5cbcb62dddf5 ("fs/proc: fix softlockup in __read_vmcore") the
number of softlockups in __read_vmcore at kdump time have gone down, but
they still happen sometimes.
In a memory constrained environment like the kdump image, a softlockup is
not just a harmless message, but it can interfere with things like RCU
freeing memory, causing the crashdump to get stuck.
The second loop in __read_vmcore has a lot more opportunities for natural
sleep points, like scheduling out while waiting for a data write to
happen, but apparently that is not always enough.
Add a cond_resched() to the second loop in __read_vmcore to (hopefully)
get rid of the softlockups. |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: Intel: hda-dai: Ensure DAI widget is valid during params
Each cpu DAI should associate with a widget. However, the topology might
not create the right number of DAI widgets for aggregated amps. And it
will cause NULL pointer deference.
Check that the DAI widget associated with the CPU DAI is valid to prevent
NULL pointer deference due to missing DAI widgets in topologies with
aggregated amps. |
In the Linux kernel, the following vulnerability has been resolved:
platform/x86: int3472: Check for adev == NULL
Not all devices have an ACPI companion fwnode, so adev might be NULL. This
can e.g. (theoretically) happen when a user manually binds one of
the int3472 drivers to another i2c/platform device through sysfs.
Add a check for adev not being set and return -ENODEV in that case to
avoid a possible NULL pointer deref in skl_int3472_get_acpi_buffer(). |
In the Linux kernel, the following vulnerability has been resolved:
drm/dp_mst: Ensure mst_primary pointer is valid in drm_dp_mst_handle_up_req()
While receiving an MST up request message from one thread in
drm_dp_mst_handle_up_req(), the MST topology could be removed from
another thread via drm_dp_mst_topology_mgr_set_mst(false), freeing
mst_primary and setting drm_dp_mst_topology_mgr::mst_primary to NULL.
This could lead to a NULL deref/use-after-free of mst_primary in
drm_dp_mst_handle_up_req().
Avoid the above by holding a reference for mst_primary in
drm_dp_mst_handle_up_req() while it's used.
v2: Fix kfreeing the request if getting an mst_primary reference fails. |
In the Linux kernel, the following vulnerability has been resolved:
PCI: endpoint: epf-mhi: Avoid NULL dereference if DT lacks 'mmio'
If platform_get_resource_byname() fails and returns NULL because DT lacks
an 'mmio' property for the MHI endpoint, dereferencing res->start will
cause a NULL pointer access. Add a check to prevent it.
[kwilczynski: error message update per the review feedback]
[bhelgaas: commit log] |
In the Linux kernel, the following vulnerability has been resolved:
iommu/tegra241-cmdqv: Fix alignment failure at max_n_shift
When configuring a kernel with PAGE_SIZE=4KB, depending on its setting of
CONFIG_CMA_ALIGNMENT, VCMDQ_LOG2SIZE_MAX=19 could fail the alignment test
and trigger a WARN_ON:
WARNING: at drivers/iommu/arm/arm-smmu-v3/arm-smmu-v3.c:3646
Call trace:
arm_smmu_init_one_queue+0x15c/0x210
tegra241_cmdqv_init_structures+0x114/0x338
arm_smmu_device_probe+0xb48/0x1d90
Fix it by capping max_n_shift to CMDQ_MAX_SZ_SHIFT as SMMUv3 CMDQ does. |