CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
x86/mce: Work around an erratum on fast string copy instructions
A rare kernel panic scenario can happen when the following conditions
are met due to an erratum on fast string copy instructions:
1) An uncorrected error.
2) That error must be in first cache line of a page.
3) Kernel must execute page_copy from the page immediately before that
page.
The fast string copy instructions ("REP; MOVS*") could consume an
uncorrectable memory error in the cache line _right after_ the desired
region to copy and raise an MCE.
Bit 0 of MSR_IA32_MISC_ENABLE can be cleared to disable fast string
copy and will avoid such spurious machine checks. However, that is less
preferable due to the permanent performance impact. Considering memory
poison is rare, it's desirable to keep fast string copy enabled until an
MCE is seen.
Intel has confirmed the following:
1. The CPU erratum of fast string copy only applies to Skylake,
Cascade Lake and Cooper Lake generations.
Directly return from the MCE handler:
2. Will result in complete execution of the "REP; MOVS*" with no data
loss or corruption.
3. Will not result in another MCE firing on the next poisoned cache line
due to "REP; MOVS*".
4. Will resume execution from a correct point in code.
5. Will result in the same instruction that triggered the MCE firing a
second MCE immediately for any other software recoverable data fetch
errors.
6. Is not safe without disabling the fast string copy, as the next fast
string copy of the same buffer on the same CPU would result in a PANIC
MCE.
This should mitigate the erratum completely with the only caveat that
the fast string copy is disabled on the affected hyper thread thus
performance degradation.
This is still better than the OS crashing on MCEs raised on an
irrelevant process due to "REP; MOVS*' accesses in a kernel context,
e.g., copy_page.
Injected errors on 1st cache line of 8 anonymous pages of process
'proc1' and observed MCE consumption from 'proc2' with no panic
(directly returned).
Without the fix, the host panicked within a few minutes on a
random 'proc2' process due to kernel access from copy_page.
[ bp: Fix comment style + touch ups, zap an unlikely(), improve the
quirk function's readability. ] |
In the Linux kernel, the following vulnerability has been resolved:
scsi: hisi_sas: Free irq vectors in order for v3 HW
If the driver probe fails to request the channel IRQ or fatal IRQ, the
driver will free the IRQ vectors before freeing the IRQs in free_irq(),
and this will cause a kernel BUG like this:
------------[ cut here ]------------
kernel BUG at drivers/pci/msi.c:369!
Internal error: Oops - BUG: 0 [#1] PREEMPT SMP
Call trace:
free_msi_irqs+0x118/0x13c
pci_disable_msi+0xfc/0x120
pci_free_irq_vectors+0x24/0x3c
hisi_sas_v3_probe+0x360/0x9d0 [hisi_sas_v3_hw]
local_pci_probe+0x44/0xb0
work_for_cpu_fn+0x20/0x34
process_one_work+0x1d0/0x340
worker_thread+0x2e0/0x460
kthread+0x180/0x190
ret_from_fork+0x10/0x20
---[ end trace b88990335b610c11 ]---
So we use devm_add_action() to control the order in which we free the
vectors. |
In the Linux kernel, the following vulnerability has been resolved:
ntfs: add sanity check on allocation size
ntfs_read_inode_mount invokes ntfs_malloc_nofs with zero allocation
size. It triggers one BUG in the __ntfs_malloc function.
Fix this by adding sanity check on ni->attr_list_size. |
In the Linux kernel, the following vulnerability has been resolved:
video: fbdev: sm712fb: Fix crash in smtcfb_write()
When the sm712fb driver writes three bytes to the framebuffer, the
driver will crash:
BUG: unable to handle page fault for address: ffffc90001ffffff
RIP: 0010:smtcfb_write+0x454/0x5b0
Call Trace:
vfs_write+0x291/0xd60
? do_sys_openat2+0x27d/0x350
? __fget_light+0x54/0x340
ksys_write+0xce/0x190
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Fix it by removing the open-coded endianness fixup-code. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix premature hw access after PCI error
After a recoverable PCI error has been detected and recovered, qla driver
needs to check to see if the error condition still persist and/or wait
for the OS to give the resume signal.
Sep 8 22:26:03 localhost kernel: WARNING: CPU: 9 PID: 124606 at qla_tmpl.c:440
qla27xx_fwdt_entry_t266+0x55/0x60 [qla2xxx]
Sep 8 22:26:03 localhost kernel: RIP: 0010:qla27xx_fwdt_entry_t266+0x55/0x60
[qla2xxx]
Sep 8 22:26:03 localhost kernel: Call Trace:
Sep 8 22:26:03 localhost kernel: ? qla27xx_walk_template+0xb1/0x1b0 [qla2xxx]
Sep 8 22:26:03 localhost kernel: ? qla27xx_execute_fwdt_template+0x12a/0x160
[qla2xxx]
Sep 8 22:26:03 localhost kernel: ? qla27xx_fwdump+0xa0/0x1c0 [qla2xxx]
Sep 8 22:26:03 localhost kernel: ? qla2xxx_pci_mmio_enabled+0xfb/0x120
[qla2xxx]
Sep 8 22:26:03 localhost kernel: ? report_mmio_enabled+0x44/0x80
Sep 8 22:26:03 localhost kernel: ? report_slot_reset+0x80/0x80
Sep 8 22:26:03 localhost kernel: ? pci_walk_bus+0x70/0x90
Sep 8 22:26:03 localhost kernel: ? aer_dev_correctable_show+0xc0/0xc0
Sep 8 22:26:03 localhost kernel: ? pcie_do_recovery+0x1bb/0x240
Sep 8 22:26:03 localhost kernel: ? aer_recover_work_func+0xaa/0xd0
Sep 8 22:26:03 localhost kernel: ? process_one_work+0x1a7/0x360
..
Sep 8 22:26:03 localhost kernel: qla2xxx [0000:42:00.2]-8041:22: detected PCI
disconnect.
Sep 8 22:26:03 localhost kernel: qla2xxx [0000:42:00.2]-107ff:22:
qla27xx_fwdt_entry_t262: dump ram MB failed. Area 5h start 198013h end 198013h
Sep 8 22:26:03 localhost kernel: qla2xxx [0000:42:00.2]-107ff:22: Unable to
capture FW dump
Sep 8 22:26:03 localhost kernel: qla2xxx [0000:42:00.2]-1015:22: cmd=0x0,
waited 5221 msecs
Sep 8 22:26:03 localhost kernel: qla2xxx [0000:42:00.2]-680d:22: mmio
enabled returning.
Sep 8 22:26:03 localhost kernel: qla2xxx [0000:42:00.2]-d04c:22: MBX
Command timeout for cmd 0, iocontrol=ffffffff jiffies=10140f2e5
mb[0-3]=[0xffff 0xffff 0xffff 0xffff] |
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix scheduling while atomic
The driver makes a call into midlayer (fc_remote_port_delete) which can put
the thread to sleep. The thread that originates the call is in interrupt
context. The combination of the two trigger a crash. Schedule the call in
non-interrupt context where it is more safe.
kernel: BUG: scheduling while atomic: swapper/7/0/0x00010000
kernel: Call Trace:
kernel: <IRQ>
kernel: dump_stack+0x66/0x81
kernel: __schedule_bug.cold.90+0x5/0x1d
kernel: __schedule+0x7af/0x960
kernel: schedule+0x28/0x80
kernel: schedule_timeout+0x26d/0x3b0
kernel: wait_for_completion+0xb4/0x140
kernel: ? wake_up_q+0x70/0x70
kernel: __wait_rcu_gp+0x12c/0x160
kernel: ? sdev_evt_alloc+0xc0/0x180 [scsi_mod]
kernel: synchronize_sched+0x6c/0x80
kernel: ? call_rcu_bh+0x20/0x20
kernel: ? __bpf_trace_rcu_invoke_callback+0x10/0x10
kernel: sdev_evt_alloc+0xfd/0x180 [scsi_mod]
kernel: starget_for_each_device+0x85/0xb0 [scsi_mod]
kernel: ? scsi_init_io+0x360/0x3d0 [scsi_mod]
kernel: scsi_init_io+0x388/0x3d0 [scsi_mod]
kernel: device_for_each_child+0x54/0x90
kernel: fc_remote_port_delete+0x70/0xe0 [scsi_transport_fc]
kernel: qla2x00_schedule_rport_del+0x62/0xf0 [qla2xxx]
kernel: qla2x00_mark_device_lost+0x9c/0xd0 [qla2xxx]
kernel: qla24xx_handle_plogi_done_event+0x55f/0x570 [qla2xxx]
kernel: qla2x00_async_login_sp_done+0xd2/0x100 [qla2xxx]
kernel: qla24xx_logio_entry+0x13a/0x3c0 [qla2xxx]
kernel: qla24xx_process_response_queue+0x306/0x400 [qla2xxx]
kernel: qla24xx_msix_rsp_q+0x3f/0xb0 [qla2xxx]
kernel: __handle_irq_event_percpu+0x40/0x180
kernel: handle_irq_event_percpu+0x30/0x80
kernel: handle_irq_event+0x36/0x60 |
SQL injection vulnerability in versions prior to 4.7.0 of Quiter Gateway by Quiter. This vulnerability allows an attacker to retrieve, create, update and delete databases through the id_concesion parameter in /<Client>FacturaE/DescargarFactura. |
SQL injection vulnerability in versions prior to 4.7.0 of Quiter Gateway by Quiter. This vulnerability allows an attacker to retrieve, create, update and delete databases through the campo parameter in/<Client>FacturaE/BusquedasFacturasSesion. |
SQL injection vulnerability in versions prior to 4.7.0 of Quiter Gateway by Quiter. This vulnerability allows an attacker to retrieve, create, update and delete databases through the campo id_factura inĀ /<Client>FacturaE/listado_facturas_ficha.jsp. |
Missing Authorization vulnerability in Drupal Facets allows Forceful Browsing.This issue affects Facets: from 0.0.0 before 2.0.10, from 3.0.0 before 3.0.1. |
Loomio version 2.22.0 allows executing arbitrary commands on the server.
This is possible because the application is vulnerable to OS Command Injection. |
A vulnerability was found in panhainan DS-Java 1.0 and classified as critical. This issue affects the function uploadUserPic.action of the file src/com/phn/action/FileUpload.java. The manipulation of the argument fileUpload leads to code injection. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. |
A vulnerability was found in panhainan DS-Java 1.0. It has been classified as problematic. Affected is an unknown function. The manipulation leads to cross-site request forgery. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. |
A vulnerability was found in markparticle WebServer up to 1.0. It has been declared as critical. Affected by this vulnerability is the function Buffer::HasWritten of the file code/buffer/buffer.cpp. The manipulation of the argument writePos_ leads to buffer overflow. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. |
Memory corruption may occur while processing IOCTL call for DMM/WARPNCC CONFIG request. |
A vulnerability was found in markparticle WebServer up to 1.0. It has been rated as critical. Affected by this issue is some unknown functionality of the file code/http/httprequest.cpp of the component Registration. The manipulation of the argument username/password leads to sql injection. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. |
SQL injection in Ivanti Endpoint Manager allows a remote authenticated attacker to read arbitrary data from the database. |
SQL injection in Ivanti Endpoint Manager allows a remote authenticated attacker to read arbitrary data from the database. |
SQL injection in Ivanti Endpoint Manager allows a remote authenticated attacker to read arbitrary data from the database. |
SQL injection in Ivanti Endpoint Manager allows a remote authenticated attacker to read arbitrary data from the database. |