| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A flaw was found in the ATA over Ethernet (AoE) driver in the Linux kernel. The aoecmd_cfg_pkts() function improperly updates the refcnt on `struct net_device`, and a use-after-free can be triggered by racing between the free on the struct and the access through the `skbtxq` global queue. This could lead to a denial of service condition or potential code execution. |
| A use-after-free vulnerability was found in drivers/nvme/target/tcp.c` in `nvmet_tcp_free_crypto` due to a logical bug in the NVMe/TCP subsystem in the Linux kernel. This issue may allow a malicious user to cause a use-after-free and double-free problem, which may permit remote code execution or lead to local privilege escalation. |
| A flaw was found in the Linux kernel's TUN/TAP functionality. This issue could allow a local user to bypass network filters and gain unauthorized access to some resources. The original patches fixing CVE-2023-1076 are incorrect or incomplete. The problem is that the following upstream commits - a096ccca6e50 ("tun: tun_chr_open(): correctly initialize socket uid"), - 66b2c338adce ("tap: tap_open(): correctly initialize socket uid"), pass "inode->i_uid" to sock_init_data_uid() as the last parameter and that turns out to not be accurate. |
| A race condition was found in the QXL driver in the Linux kernel. The qxl_mode_dumb_create() function dereferences the qobj returned by the qxl_gem_object_create_with_handle(), but the handle is the only one holding a reference to it. This flaw allows an attacker to guess the returned handle value and trigger a use-after-free issue, potentially leading to a denial of service or privilege escalation. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64/fpsimd: ptrace: Fix SVE writes on !SME systems
When SVE is supported but SME is not supported, a ptrace write to the
NT_ARM_SVE regset can place the tracee into an invalid state where
(non-streaming) SVE register data is stored in FP_STATE_SVE format but
TIF_SVE is clear. This can result in a later warning from
fpsimd_restore_current_state(), e.g.
WARNING: CPU: 0 PID: 7214 at arch/arm64/kernel/fpsimd.c:383 fpsimd_restore_current_state+0x50c/0x748
When this happens, fpsimd_restore_current_state() will set TIF_SVE,
placing the task into the correct state. This occurs before any other
check of TIF_SVE can possibly occur, as other checks of TIF_SVE only
happen while the FPSIMD/SVE/SME state is live. Thus, aside from the
warning, there is no functional issue.
This bug was introduced during rework to error handling in commit:
9f8bf718f2923 ("arm64/fpsimd: ptrace: Gracefully handle errors")
... where the setting of TIF_SVE was moved into a block which is only
executed when system_supports_sme() is true.
Fix this by removing the system_supports_sme() check. This ensures that
TIF_SVE is set for (SVE-formatted) writes to NT_ARM_SVE, at the cost of
unconditionally manipulating the tracee's saved svcr value. The
manipulation of svcr is benign and inexpensive, and we already do
similar elsewhere (e.g. during signal handling), so I don't think it's
worth guarding this with system_supports_sme() checks.
Aside from the above, there is no functional change. The 'type' argument
to sve_set_common() is only set to ARM64_VEC_SME (in ssve_set())) when
system_supports_sme(), so the ARM64_VEC_SME case in the switch statement
is still unreachable when !system_supports_sme(). When
CONFIG_ARM64_SME=n, the only caller of sve_set_common() is sve_set(),
and the compiler can constant-fold for the case where type is
ARM64_VEC_SVE, removing the logic for other cases. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: zlib: fix the folio leak on S390 hardware acceleration
[BUG]
After commit aa60fe12b4f4 ("btrfs: zlib: refactor S390x HW acceleration
buffer preparation"), we no longer release the folio of the page cache
of folio returned by btrfs_compress_filemap_get_folio() for S390
hardware acceleration path.
[CAUSE]
Before that commit, we call kumap_local() and folio_put() after handling
each folio.
Although the timing is not ideal (it release previous folio at the
beginning of the loop, and rely on some extra cleanup out of the loop),
it at least handles the folio release correctly.
Meanwhile the refactored code is easier to read, it lacks the call to
release the filemap folio.
[FIX]
Add the missing folio_put() for copy_data_into_buffer(). |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_uart: fix null-ptr-deref in hci_uart_write_work
hci_uart_set_proto() sets HCI_UART_PROTO_INIT before calling
hci_uart_register_dev(), which calls proto->open() to initialize
hu->priv. However, if a TTY write wakeup occurs during this window,
hci_uart_tx_wakeup() may schedule write_work before hu->priv is
initialized, leading to a NULL pointer dereference in
hci_uart_write_work() when proto->dequeue() accesses hu->priv.
The race condition is:
CPU0 CPU1
---- ----
hci_uart_set_proto()
set_bit(HCI_UART_PROTO_INIT)
hci_uart_register_dev()
tty write wakeup
hci_uart_tty_wakeup()
hci_uart_tx_wakeup()
schedule_work(&hu->write_work)
proto->open(hu)
// initializes hu->priv
hci_uart_write_work()
hci_uart_dequeue()
proto->dequeue(hu)
// accesses hu->priv (NULL!)
Fix this by moving set_bit(HCI_UART_PROTO_INIT) after proto->open()
succeeds, ensuring hu->priv is initialized before any work can be
scheduled. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/sysfs: cleanup attrs subdirs on context dir setup failure
When a context DAMON sysfs directory setup is failed after setup of attrs/
directory, subdirectories of attrs/ directory are not cleaned up. As a
result, DAMON sysfs interface is nearly broken until the system reboots,
and the memory for the unremoved directory is leaked.
Cleanup the directories under such failures. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: add missing ice_deinit_hw() in devlink reinit path
devlink-reload results in ice_init_hw failed error, and then removing
the ice driver causes a NULL pointer dereference.
[ +0.102213] ice 0000:ca:00.0: ice_init_hw failed: -16
...
[ +0.000001] Call Trace:
[ +0.000003] <TASK>
[ +0.000006] ice_unload+0x8f/0x100 [ice]
[ +0.000081] ice_remove+0xba/0x300 [ice]
Commit 1390b8b3d2be ("ice: remove duplicate call to ice_deinit_hw() on
error paths") removed ice_deinit_hw() from ice_deinit_dev(). As a result
ice_devlink_reinit_down() no longer calls ice_deinit_hw(), but
ice_devlink_reinit_up() still calls ice_init_hw(). Since the control
queues are not uninitialized, ice_init_hw() fails with -EBUSY.
Add ice_deinit_hw() to ice_devlink_reinit_down() to correspond with
ice_init_hw() in ice_devlink_reinit_up(). |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: Set __nocfi on swsusp_arch_resume()
A DABT is reported[1] on an android based system when resume from hiberate.
This happens because swsusp_arch_suspend_exit() is marked with SYM_CODE_*()
and does not have a CFI hash, but swsusp_arch_resume() will attempt to
verify the CFI hash when calling a copy of swsusp_arch_suspend_exit().
Given that there's an existing requirement that the entrypoint to
swsusp_arch_suspend_exit() is the first byte of the .hibernate_exit.text
section, we cannot fix this by marking swsusp_arch_suspend_exit() with
SYM_FUNC_*(). The simplest fix for now is to disable the CFI check in
swsusp_arch_resume().
Mark swsusp_arch_resume() as __nocfi to disable the CFI check.
[1]
[ 22.991934][ T1] Unable to handle kernel paging request at virtual address 0000000109170ffc
[ 22.991934][ T1] Mem abort info:
[ 22.991934][ T1] ESR = 0x0000000096000007
[ 22.991934][ T1] EC = 0x25: DABT (current EL), IL = 32 bits
[ 22.991934][ T1] SET = 0, FnV = 0
[ 22.991934][ T1] EA = 0, S1PTW = 0
[ 22.991934][ T1] FSC = 0x07: level 3 translation fault
[ 22.991934][ T1] Data abort info:
[ 22.991934][ T1] ISV = 0, ISS = 0x00000007, ISS2 = 0x00000000
[ 22.991934][ T1] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 22.991934][ T1] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 22.991934][ T1] [0000000109170ffc] user address but active_mm is swapper
[ 22.991934][ T1] Internal error: Oops: 0000000096000007 [#1] PREEMPT SMP
[ 22.991934][ T1] Dumping ftrace buffer:
[ 22.991934][ T1] (ftrace buffer empty)
[ 22.991934][ T1] Modules linked in:
[ 22.991934][ T1] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.6.98-android15-8-g0b1d2aee7fc3-dirty-4k #1 688c7060a825a3ac418fe53881730b355915a419
[ 22.991934][ T1] Hardware name: Unisoc UMS9360-base Board (DT)
[ 22.991934][ T1] pstate: 804000c5 (Nzcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 22.991934][ T1] pc : swsusp_arch_resume+0x2ac/0x344
[ 22.991934][ T1] lr : swsusp_arch_resume+0x294/0x344
[ 22.991934][ T1] sp : ffffffc08006b960
[ 22.991934][ T1] x29: ffffffc08006b9c0 x28: 0000000000000000 x27: 0000000000000000
[ 22.991934][ T1] x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000820
[ 22.991934][ T1] x23: ffffffd0817e3000 x22: ffffffd0817e3000 x21: 0000000000000000
[ 22.991934][ T1] x20: ffffff8089171000 x19: ffffffd08252c8c8 x18: ffffffc080061058
[ 22.991934][ T1] x17: 00000000529c6ef0 x16: 00000000529c6ef0 x15: 0000000000000004
[ 22.991934][ T1] x14: ffffff8178c88000 x13: 0000000000000006 x12: 0000000000000000
[ 22.991934][ T1] x11: 0000000000000015 x10: 0000000000000001 x9 : ffffffd082533000
[ 22.991934][ T1] x8 : 0000000109171000 x7 : 205b5d3433393139 x6 : 392e32322020205b
[ 22.991934][ T1] x5 : 000000010916f000 x4 : 000000008164b000 x3 : ffffff808a4e0530
[ 22.991934][ T1] x2 : ffffffd08058e784 x1 : 0000000082326000 x0 : 000000010a283000
[ 22.991934][ T1] Call trace:
[ 22.991934][ T1] swsusp_arch_resume+0x2ac/0x344
[ 22.991934][ T1] hibernation_restore+0x158/0x18c
[ 22.991934][ T1] load_image_and_restore+0xb0/0xec
[ 22.991934][ T1] software_resume+0xf4/0x19c
[ 22.991934][ T1] software_resume_initcall+0x34/0x78
[ 22.991934][ T1] do_one_initcall+0xe8/0x370
[ 22.991934][ T1] do_initcall_level+0xc8/0x19c
[ 22.991934][ T1] do_initcalls+0x70/0xc0
[ 22.991934][ T1] do_basic_setup+0x1c/0x28
[ 22.991934][ T1] kernel_init_freeable+0xe0/0x148
[ 22.991934][ T1] kernel_init+0x20/0x1a8
[ 22.991934][ T1] ret_from_fork+0x10/0x20
[ 22.991934][ T1] Code: a9400a61 f94013e0 f9438923 f9400a64 (b85fc110)
[catalin.marinas@arm.com: commit log updated by Mark Rutland] |
| In the Linux kernel, the following vulnerability has been resolved:
firewire: core: fix race condition against transaction list
The list of transaction is enumerated without acquiring card lock when
processing AR response event. This causes a race condition bug when
processing AT request completion event concurrently.
This commit fixes the bug by put timer start for split transaction
expiration into the scope of lock. The value of jiffies in card structure
is referred before acquiring the lock. |
| In the Linux kernel, the following vulnerability has been resolved:
flex_proportions: make fprop_new_period() hardirq safe
Bernd has reported a lockdep splat from flexible proportions code that is
essentially complaining about the following race:
<timer fires>
run_timer_softirq - we are in softirq context
call_timer_fn
writeout_period
fprop_new_period
write_seqcount_begin(&p->sequence);
<hardirq is raised>
...
blk_mq_end_request()
blk_update_request()
ext4_end_bio()
folio_end_writeback()
__wb_writeout_add()
__fprop_add_percpu_max()
if (unlikely(max_frac < FPROP_FRAC_BASE)) {
fprop_fraction_percpu()
seq = read_seqcount_begin(&p->sequence);
- sees odd sequence so loops indefinitely
Note that a deadlock like this is only possible if the bdi has configured
maximum fraction of writeout throughput which is very rare in general but
frequent for example for FUSE bdis. To fix this problem we have to make
sure write section of the sequence counter is irqsafe. |
| In the Linux kernel, the following vulnerability has been resolved:
net: fix segmentation of forwarding fraglist GRO
This patch enhances GSO segment handling by properly checking
the SKB_GSO_DODGY flag for frag_list GSO packets, addressing
low throughput issues observed when a station accesses IPv4
servers via hotspots with an IPv6-only upstream interface.
Specifically, it fixes a bug in GSO segmentation when forwarding
GRO packets containing a frag_list. The function skb_segment_list
cannot correctly process GRO skbs that have been converted by XLAT,
since XLAT only translates the header of the head skb. Consequently,
skbs in the frag_list may remain untranslated, resulting in protocol
inconsistencies and reduced throughput.
To address this, the patch explicitly sets the SKB_GSO_DODGY flag
for GSO packets in XLAT's IPv4/IPv6 protocol translation helpers
(bpf_skb_proto_4_to_6 and bpf_skb_proto_6_to_4). This marks GSO
packets as potentially modified after protocol translation. As a
result, GSO segmentation will avoid using skb_segment_list and
instead falls back to skb_segment for packets with the SKB_GSO_DODGY
flag. This ensures that only safe and fully translated frag_list
packets are processed by skb_segment_list, resolving protocol
inconsistencies and improving throughput when forwarding GRO packets
converted by XLAT. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/sysfs-scheme: cleanup access_pattern subdirs on scheme dir setup failure
When a DAMOS-scheme DAMON sysfs directory setup fails after setup of
access_pattern/ directory, subdirectories of access_pattern/ directory are
not cleaned up. As a result, DAMON sysfs interface is nearly broken until
the system reboots, and the memory for the unremoved directory is leaked.
Cleanup the directories under such failures. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/io-wq: check IO_WQ_BIT_EXIT inside work run loop
Currently this is checked before running the pending work. Normally this
is quite fine, as work items either end up blocking (which will create a
new worker for other items), or they complete fairly quickly. But syzbot
reports an issue where io-wq takes seemingly forever to exit, and with a
bit of debugging, this turns out to be because it queues a bunch of big
(2GB - 4096b) reads with a /dev/msr* file. Since this file type doesn't
support ->read_iter(), loop_rw_iter() ends up handling them. Each read
returns 16MB of data read, which takes 20 (!!) seconds. With a bunch of
these pending, processing the whole chain can take a long time. Easily
longer than the syzbot uninterruptible sleep timeout of 140 seconds.
This then triggers a complaint off the io-wq exit path:
INFO: task syz.4.135:6326 blocked for more than 143 seconds.
Not tainted syzkaller #0
Blocked by coredump.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:syz.4.135 state:D stack:26824 pid:6326 tgid:6324 ppid:5957 task_flags:0x400548 flags:0x00080000
Call Trace:
<TASK>
context_switch kernel/sched/core.c:5256 [inline]
__schedule+0x1139/0x6150 kernel/sched/core.c:6863
__schedule_loop kernel/sched/core.c:6945 [inline]
schedule+0xe7/0x3a0 kernel/sched/core.c:6960
schedule_timeout+0x257/0x290 kernel/time/sleep_timeout.c:75
do_wait_for_common kernel/sched/completion.c:100 [inline]
__wait_for_common+0x2fc/0x4e0 kernel/sched/completion.c:121
io_wq_exit_workers io_uring/io-wq.c:1328 [inline]
io_wq_put_and_exit+0x271/0x8a0 io_uring/io-wq.c:1356
io_uring_clean_tctx+0x10d/0x190 io_uring/tctx.c:203
io_uring_cancel_generic+0x69c/0x9a0 io_uring/cancel.c:651
io_uring_files_cancel include/linux/io_uring.h:19 [inline]
do_exit+0x2ce/0x2bd0 kernel/exit.c:911
do_group_exit+0xd3/0x2a0 kernel/exit.c:1112
get_signal+0x2671/0x26d0 kernel/signal.c:3034
arch_do_signal_or_restart+0x8f/0x7e0 arch/x86/kernel/signal.c:337
__exit_to_user_mode_loop kernel/entry/common.c:41 [inline]
exit_to_user_mode_loop+0x8c/0x540 kernel/entry/common.c:75
__exit_to_user_mode_prepare include/linux/irq-entry-common.h:226 [inline]
syscall_exit_to_user_mode_prepare include/linux/irq-entry-common.h:256 [inline]
syscall_exit_to_user_mode_work include/linux/entry-common.h:159 [inline]
syscall_exit_to_user_mode include/linux/entry-common.h:194 [inline]
do_syscall_64+0x4ee/0xf80 arch/x86/entry/syscall_64.c:100
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fa02738f749
RSP: 002b:00007fa0281ae0e8 EFLAGS: 00000246 ORIG_RAX: 00000000000000ca
RAX: fffffffffffffe00 RBX: 00007fa0275e6098 RCX: 00007fa02738f749
RDX: 0000000000000000 RSI: 0000000000000080 RDI: 00007fa0275e6098
RBP: 00007fa0275e6090 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 00007fa0275e6128 R14: 00007fff14e4fcb0 R15: 00007fff14e4fd98
There's really nothing wrong here, outside of processing these reads
will take a LONG time. However, we can speed up the exit by checking the
IO_WQ_BIT_EXIT inside the io_worker_handle_work() loop, as syzbot will
exit the ring after queueing up all of these reads. Then once the first
item is processed, io-wq will simply cancel the rest. That should avoid
syzbot running into this complaint again. |
| In the Linux kernel, the following vulnerability has been resolved:
efivarfs: fix error propagation in efivar_entry_get()
efivar_entry_get() always returns success even if the underlying
__efivar_entry_get() fails, masking errors.
This may result in uninitialized heap memory being copied to userspace
in the efivarfs_file_read() path.
Fix it by returning the error from __efivar_entry_get(). |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix dma_free_coherent() pointer
dma_alloc_coherent() allocates a DMA mapped buffer and stores the
addresses in XXX_unaligned fields. Those should be reused when freeing
the buffer rather than the aligned addresses. |
| In the Linux kernel, the following vulnerability has been resolved:
bonding: provide a net pointer to __skb_flow_dissect()
After 3cbf4ffba5ee ("net: plumb network namespace into __skb_flow_dissect")
we have to provide a net pointer to __skb_flow_dissect(),
either via skb->dev, skb->sk, or a user provided pointer.
In the following case, syzbot was able to cook a bare skb.
WARNING: net/core/flow_dissector.c:1131 at __skb_flow_dissect+0xb57/0x68b0 net/core/flow_dissector.c:1131, CPU#1: syz.2.1418/11053
Call Trace:
<TASK>
bond_flow_dissect drivers/net/bonding/bond_main.c:4093 [inline]
__bond_xmit_hash+0x2d7/0xba0 drivers/net/bonding/bond_main.c:4157
bond_xmit_hash_xdp drivers/net/bonding/bond_main.c:4208 [inline]
bond_xdp_xmit_3ad_xor_slave_get drivers/net/bonding/bond_main.c:5139 [inline]
bond_xdp_get_xmit_slave+0x1fd/0x710 drivers/net/bonding/bond_main.c:5515
xdp_master_redirect+0x13f/0x2c0 net/core/filter.c:4388
bpf_prog_run_xdp include/net/xdp.h:700 [inline]
bpf_test_run+0x6b2/0x7d0 net/bpf/test_run.c:421
bpf_prog_test_run_xdp+0x795/0x10e0 net/bpf/test_run.c:1390
bpf_prog_test_run+0x2c7/0x340 kernel/bpf/syscall.c:4703
__sys_bpf+0x562/0x860 kernel/bpf/syscall.c:6182
__do_sys_bpf kernel/bpf/syscall.c:6274 [inline]
__se_sys_bpf kernel/bpf/syscall.c:6272 [inline]
__x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:6272
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xec/0xf80 arch/x86/entry/syscall_64.c:94 |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: send: check for inline extents in range_is_hole_in_parent()
Before accessing the disk_bytenr field of a file extent item we need
to check if we are dealing with an inline extent.
This is because for inline extents their data starts at the offset of
the disk_bytenr field. So accessing the disk_bytenr
means we are accessing inline data or in case the inline data is less
than 8 bytes we can actually cause an invalid
memory access if this inline extent item is the first item in the leaf
or access metadata from other items. |
| In the Linux kernel, the following vulnerability has been resolved:
l2tp: avoid one data-race in l2tp_tunnel_del_work()
We should read sk->sk_socket only when dealing with kernel sockets.
syzbot reported the following data-race:
BUG: KCSAN: data-race in l2tp_tunnel_del_work / sk_common_release
write to 0xffff88811c182b20 of 8 bytes by task 5365 on cpu 0:
sk_set_socket include/net/sock.h:2092 [inline]
sock_orphan include/net/sock.h:2118 [inline]
sk_common_release+0xae/0x230 net/core/sock.c:4003
udp_lib_close+0x15/0x20 include/net/udp.h:325
inet_release+0xce/0xf0 net/ipv4/af_inet.c:437
__sock_release net/socket.c:662 [inline]
sock_close+0x6b/0x150 net/socket.c:1455
__fput+0x29b/0x650 fs/file_table.c:468
____fput+0x1c/0x30 fs/file_table.c:496
task_work_run+0x131/0x1a0 kernel/task_work.c:233
resume_user_mode_work include/linux/resume_user_mode.h:50 [inline]
__exit_to_user_mode_loop kernel/entry/common.c:44 [inline]
exit_to_user_mode_loop+0x1fe/0x740 kernel/entry/common.c:75
__exit_to_user_mode_prepare include/linux/irq-entry-common.h:226 [inline]
syscall_exit_to_user_mode_prepare include/linux/irq-entry-common.h:256 [inline]
syscall_exit_to_user_mode_work include/linux/entry-common.h:159 [inline]
syscall_exit_to_user_mode include/linux/entry-common.h:194 [inline]
do_syscall_64+0x1e1/0x2b0 arch/x86/entry/syscall_64.c:100
entry_SYSCALL_64_after_hwframe+0x77/0x7f
read to 0xffff88811c182b20 of 8 bytes by task 827 on cpu 1:
l2tp_tunnel_del_work+0x2f/0x1a0 net/l2tp/l2tp_core.c:1418
process_one_work kernel/workqueue.c:3257 [inline]
process_scheduled_works+0x4ce/0x9d0 kernel/workqueue.c:3340
worker_thread+0x582/0x770 kernel/workqueue.c:3421
kthread+0x489/0x510 kernel/kthread.c:463
ret_from_fork+0x149/0x290 arch/x86/kernel/process.c:158
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246
value changed: 0xffff88811b818000 -> 0x0000000000000000 |