| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
fs: PM: Fix reverse check in filesystems_freeze_callback()
The freeze_all_ptr check in filesystems_freeze_callback() introduced by
commit a3f8f8662771 ("power: always freeze efivarfs") is reverse which
quite confusingly causes all file systems to be frozen when
filesystem_freeze_enabled is false.
On my systems it causes the WARN_ON_ONCE() in __set_task_frozen() to
trigger, most likely due to an attempt to freeze a file system that is
not ready for that.
Add a logical negation to the check in question to reverse it as
appropriate. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: use global inline_xattr_slab instead of per-sb slab cache
As Hong Yun reported in mailing list:
loop7: detected capacity change from 0 to 131072
------------[ cut here ]------------
kmem_cache of name 'f2fs_xattr_entry-7:7' already exists
WARNING: CPU: 0 PID: 24426 at mm/slab_common.c:110 kmem_cache_sanity_check mm/slab_common.c:109 [inline]
WARNING: CPU: 0 PID: 24426 at mm/slab_common.c:110 __kmem_cache_create_args+0xa6/0x320 mm/slab_common.c:307
CPU: 0 UID: 0 PID: 24426 Comm: syz.7.1370 Not tainted 6.17.0-rc4 #1 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
RIP: 0010:kmem_cache_sanity_check mm/slab_common.c:109 [inline]
RIP: 0010:__kmem_cache_create_args+0xa6/0x320 mm/slab_common.c:307
Call Trace:
__kmem_cache_create include/linux/slab.h:353 [inline]
f2fs_kmem_cache_create fs/f2fs/f2fs.h:2943 [inline]
f2fs_init_xattr_caches+0xa5/0xe0 fs/f2fs/xattr.c:843
f2fs_fill_super+0x1645/0x2620 fs/f2fs/super.c:4918
get_tree_bdev_flags+0x1fb/0x260 fs/super.c:1692
vfs_get_tree+0x43/0x140 fs/super.c:1815
do_new_mount+0x201/0x550 fs/namespace.c:3808
do_mount fs/namespace.c:4136 [inline]
__do_sys_mount fs/namespace.c:4347 [inline]
__se_sys_mount+0x298/0x2f0 fs/namespace.c:4324
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0x8e/0x3a0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The bug can be reproduced w/ below scripts:
- mount /dev/vdb /mnt1
- mount /dev/vdc /mnt2
- umount /mnt1
- mounnt /dev/vdb /mnt1
The reason is if we created two slab caches, named f2fs_xattr_entry-7:3
and f2fs_xattr_entry-7:7, and they have the same slab size. Actually,
slab system will only create one slab cache core structure which has
slab name of "f2fs_xattr_entry-7:3", and two slab caches share the same
structure and cache address.
So, if we destroy f2fs_xattr_entry-7:3 cache w/ cache address, it will
decrease reference count of slab cache, rather than release slab cache
entirely, since there is one more user has referenced the cache.
Then, if we try to create slab cache w/ name "f2fs_xattr_entry-7:3" again,
slab system will find that there is existed cache which has the same name
and trigger the warning.
Let's changes to use global inline_xattr_slab instead of per-sb slab cache
for fixing. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Fix VM hard lockup after prolonged inactivity with periodic HV timer
When advancing the target expiration for the guest's APIC timer in periodic
mode, set the expiration to "now" if the target expiration is in the past
(similar to what is done in update_target_expiration()). Blindly adding
the period to the previous target expiration can result in KVM generating
a practically unbounded number of hrtimer IRQs due to programming an
expired timer over and over. In extreme scenarios, e.g. if userspace
pauses/suspends a VM for an extended duration, this can even cause hard
lockups in the host.
Currently, the bug only affects Intel CPUs when using the hypervisor timer
(HV timer), a.k.a. the VMX preemption timer. Unlike the software timer,
a.k.a. hrtimer, which KVM keeps running even on exits to userspace, the
HV timer only runs while the guest is active. As a result, if the vCPU
does not run for an extended duration, there will be a huge gap between
the target expiration and the current time the vCPU resumes running.
Because the target expiration is incremented by only one period on each
timer expiration, this leads to a series of timer expirations occurring
rapidly after the vCPU/VM resumes.
More critically, when the vCPU first triggers a periodic HV timer
expiration after resuming, advancing the expiration by only one period
will result in a target expiration in the past. As a result, the delta
may be calculated as a negative value. When the delta is converted into
an absolute value (tscdeadline is an unsigned u64), the resulting value
can overflow what the HV timer is capable of programming. I.e. the large
value will exceed the VMX Preemption Timer's maximum bit width of
cpu_preemption_timer_multi + 32, and thus cause KVM to switch from the
HV timer to the software timer (hrtimers).
After switching to the software timer, periodic timer expiration callbacks
may be executed consecutively within a single clock interrupt handler,
because hrtimers honors KVM's request for an expiration in the past and
immediately re-invokes KVM's callback after reprogramming. And because
the interrupt handler runs with IRQs disabled, restarting KVM's hrtimer
over and over until the target expiration is advanced to "now" can result
in a hard lockup.
E.g. the following hard lockup was triggered in the host when running a
Windows VM (only relevant because it used the APIC timer in periodic mode)
after resuming the VM from a long suspend (in the host).
NMI watchdog: Watchdog detected hard LOCKUP on cpu 45
...
RIP: 0010:advance_periodic_target_expiration+0x4d/0x80 [kvm]
...
RSP: 0018:ff4f88f5d98d8ef0 EFLAGS: 00000046
RAX: fff0103f91be678e RBX: fff0103f91be678e RCX: 00843a7d9e127bcc
RDX: 0000000000000002 RSI: 0052ca4003697505 RDI: ff440d5bfbdbd500
RBP: ff440d5956f99200 R08: ff2ff2a42deb6a84 R09: 000000000002a6c0
R10: 0122d794016332b3 R11: 0000000000000000 R12: ff440db1af39cfc0
R13: ff440db1af39cfc0 R14: ffffffffc0d4a560 R15: ff440db1af39d0f8
FS: 00007f04a6ffd700(0000) GS:ff440db1af380000(0000) knlGS:000000e38a3b8000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000d5651feff8 CR3: 000000684e038002 CR4: 0000000000773ee0
PKRU: 55555554
Call Trace:
<IRQ>
apic_timer_fn+0x31/0x50 [kvm]
__hrtimer_run_queues+0x100/0x280
hrtimer_interrupt+0x100/0x210
? ttwu_do_wakeup+0x19/0x160
smp_apic_timer_interrupt+0x6a/0x130
apic_timer_interrupt+0xf/0x20
</IRQ>
Moreover, if the suspend duration of the virtual machine is not long enough
to trigger a hard lockup in this scenario, since commit 98c25ead5eda
("KVM: VMX: Move preemption timer <=> hrtimer dance to common x86"), KVM
will continue using the software timer until the guest reprograms the APIC
timer in some way. Since the periodic timer does not require frequent APIC
timer register programming, the guest may continue to use the software
timer in
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: adreno: fix deferencing ifpc_reglist when not declared
On plaforms with an a7xx GPU not supporting IFPC, the ifpc_reglist
if still deferenced in a7xx_patch_pwrup_reglist() which causes
a kernel crash:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008
...
pc : a6xx_hw_init+0x155c/0x1e4c [msm]
lr : a6xx_hw_init+0x9a8/0x1e4c [msm]
...
Call trace:
a6xx_hw_init+0x155c/0x1e4c [msm] (P)
msm_gpu_hw_init+0x58/0x88 [msm]
adreno_load_gpu+0x94/0x1fc [msm]
msm_open+0xe4/0xf4 [msm]
drm_file_alloc+0x1a0/0x2e4 [drm]
drm_client_init+0x7c/0x104 [drm]
drm_fbdev_client_setup+0x94/0xcf0 [drm_client_lib]
drm_client_setup+0xb4/0xd8 [drm_client_lib]
msm_drm_kms_post_init+0x2c/0x3c [msm]
msm_drm_init+0x1a4/0x228 [msm]
msm_drm_bind+0x30/0x3c [msm]
...
Check the validity of ifpc_reglist before deferencing the table
to setup the register values.
Patchwork: https://patchwork.freedesktop.org/patch/688944/ |
| In the Linux kernel, the following vulnerability has been resolved:
scs: fix a wrong parameter in __scs_magic
__scs_magic() needs a 'void *' variable, but a 'struct task_struct *' is
given. 'task_scs(tsk)' is the starting address of the task's shadow call
stack, and '__scs_magic(task_scs(tsk))' is the end address of the task's
shadow call stack. Here should be '__scs_magic(task_scs(tsk))'.
The user-visible effect of this bug is that when CONFIG_DEBUG_STACK_USAGE
is enabled, the shadow call stack usage checking function
(scs_check_usage) would scan an incorrect memory range. This could lead
1. **Inaccurate stack usage reporting**: The function would calculate
wrong usage statistics for the shadow call stack, potentially showing
incorrect value in kmsg.
2. **Potential kernel crash**: If the value of __scs_magic(tsk)is
greater than that of __scs_magic(task_scs(tsk)), the for loop may
access unmapped memory, potentially causing a kernel panic. However,
this scenario is unlikely because task_struct is allocated via the slab
allocator (which typically returns lower addresses), while the shadow
call stack returned by task_scs(tsk) is allocated via vmalloc(which
typically returns higher addresses).
However, since this is purely a debugging feature
(CONFIG_DEBUG_STACK_USAGE), normal production systems should be not
unaffected. The bug only impacts developers and testers who are actively
debugging stack usage with this configuration enabled. |
| phpgurukul News Portal Project V4.1 has File Upload Vulnerability via upload.php, which enables the upload of files of any format to the server without identity authentication. |
| phpgurukul News Portal Project V4.1 is vulnerable to SQL Injection in check_availablity.php. |
| phpgurukul News Portal Project V4.1 has an Arbitrary File Deletion Vulnerability in remove_file.php. The parameter file can cause any file to be deleted. |
| Insecure permissions in Hubert Imoveis e Administracao Ltda Hub v2.0 1.27.3 allows authenticated attackers with low-level privileges to access other users' information via a crafted API request. |
| An arbitrary file upload vulnerability in the /utils/uploadFile component of Hubert Imoveis e Administracao Ltda Hub v2.0 1.27.3 allows attackers to execute arbitrary code via uploading a crafted PDF file. |
| A stored Cross Site Scripting (XSS) vulnerability in the bulletin board (SchwarzeBrett) in adata Software GmbH Mitarbeiter Portal 2.15.2.0 allows remote authenticated users to execute arbitrary JavaScript code in the web browser of other users via manipulation of the 'Inhalt' parameter of the '/SchwarzeBrett/Nachrichten/CreateNachricht' or '/SchwarzeBrett/Nachrichten/EditNachricht/' requests. |
| Software installed and run as a non-privileged user may conduct improper GPU system calls to cause mismanagement of resources reference counting creating a potential use after free scenario.
Improper resource management and reference counting on an internal resource caused scenario where potential write use after free was present. |
| Software installed and run as a non-privileged user may conduct improper GPU system calls to subvert GPU HW to write to arbitrary physical memory pages.
Under certain circumstances this exploit could be used to corrupt data pages not allocated by the GPU driver but memory pages in use by the kernel and drivers running on the platform altering their behaviour.
This attack can lead the GPU to perform write operations on restricted internal GPU buffers that can lead to a second order affect of corrupted arbitrary physical memory. |
| libsmb2 6.2+ is vulnerable to Buffer Overflow. When processing SMB2 chained PDUs (NextCommand), libsmb2 repeatedly calls smb2_add_iovector() to append to a fixed-size iovec array without checking the upper bound of v->niov (SMB2_MAX_VECTORS=256). An attacker can craft responses with many chained PDUs to overflow v->niov and perform heap out-of-bounds writes, causing memory corruption, crashes, and potentially arbitrary code execution. The SMB2_OPLOCK_BREAK path bypasses message ID validation. |
| Libsndfile <=1.2.2 contains a memory leak vulnerability in the mpeg_l3_encoder_init() function within the mpeg_l3_encode.c file. |
| An improper input handling vulnerability exists in the web-based management interface of mobility conductors running either AOS-10 or AOS-8 operating systems. Successful exploitation could allow an authenticated malicious actor with valid credentials to trigger unintended behavior on the affected system. |
| Authenticated command injection vulnerabilities exist in the web-based management interface of mobility conductors running AOS-8 operating system. Successful exploitation could allow an authenticated malicious actor to execute arbitrary commands as a privileged user on the underlying operating system. |
| Authenticated command injection vulnerabilities exist in the web-based management interface of mobility conductors running AOS-8 operating system. Successful exploitation could allow an authenticated malicious actor to execute arbitrary commands as a privileged user on the underlying operating system. |
| Authenticated command injection vulnerabilities exist in the web-based management interface of mobility conductors running AOS-8 operating system. Successful exploitation could allow an authenticated malicious actor to execute arbitrary commands as a privileged user on the underlying operating system. |
| In Eptura Archibus 2024.03.01.109, the "Run script" and "Server File" components of the "Database Update Wizard" are vulnerable to directory traversal. |