| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: cpumap: Fix memory leak in cpu_map_update_elem
Syzkaller reported a memory leak as follows:
BUG: memory leak
unreferenced object 0xff110001198ef748 (size 192):
comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s)
hex dump (first 32 bytes):
00 00 00 00 4a 19 00 00 80 ad e3 e4 fe ff c0 00 ....J...........
00 b2 d3 0c 01 00 11 ff 28 f5 8e 19 01 00 11 ff ........(.......
backtrace:
[<ffffffffadd28087>] __cpu_map_entry_alloc+0xf7/0xb00
[<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0
[<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520
[<ffffffffadc7349b>] map_update_elem+0x4cb/0x720
[<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90
[<ffffffffb029cc80>] do_syscall_64+0x30/0x40
[<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6
BUG: memory leak
unreferenced object 0xff110001198ef528 (size 192):
comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffffadd281f0>] __cpu_map_entry_alloc+0x260/0xb00
[<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0
[<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520
[<ffffffffadc7349b>] map_update_elem+0x4cb/0x720
[<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90
[<ffffffffb029cc80>] do_syscall_64+0x30/0x40
[<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6
BUG: memory leak
unreferenced object 0xff1100010fd93d68 (size 8):
comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s)
hex dump (first 8 bytes):
00 00 00 00 00 00 00 00 ........
backtrace:
[<ffffffffade5db3e>] kvmalloc_node+0x11e/0x170
[<ffffffffadd28280>] __cpu_map_entry_alloc+0x2f0/0xb00
[<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0
[<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520
[<ffffffffadc7349b>] map_update_elem+0x4cb/0x720
[<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90
[<ffffffffb029cc80>] do_syscall_64+0x30/0x40
[<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6
In the cpu_map_update_elem flow, when kthread_stop is called before
calling the threadfn of rcpu->kthread, since the KTHREAD_SHOULD_STOP bit
of kthread has been set by kthread_stop, the threadfn of rcpu->kthread
will never be executed, and rcpu->refcnt will never be 0, which will
lead to the allocated rcpu, rcpu->queue and rcpu->queue->queue cannot be
released.
Calling kthread_stop before executing kthread's threadfn will return
-EINTR. We can complete the release of memory resources in this state. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: dma: fix memory leak running mt76_dma_tx_cleanup
Fix device unregister memory leak and alway cleanup all configured
rx queues in mt76_dma_tx_cleanup routine. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: fw: fix memory leak in debugfs
Fix a memory leak that occurs when reading the fw_info
file all the way, since we return NULL indicating no
more data, but don't free the status tracking object. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: lpc32xx_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: sl811: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: isp1362: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: fbcon: release buffer when fbcon_do_set_font() failed
syzbot is reporting memory leak at fbcon_do_set_font() [1], for
commit a5a923038d70 ("fbdev: fbcon: Properly revert changes when
vc_resize() failed") missed that the buffer might be newly allocated
by fbcon_set_font(). |
| In the Linux kernel, the following vulnerability has been resolved:
USB: dwc3: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
Note, the root dentry for the debugfs directory for the device needs to
be saved so we don't have to keep looking it up, which required a bit
more refactoring to properly create and remove it when needed. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: snic: Fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic at
once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: isp116x: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: bcm63xx_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
PM: EM: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: ULPI: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
drivers: base: component: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
trace/blktrace: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: mediatek: fix of_iomap memory leak
Smatch reports:
drivers/clk/mediatek/clk-mtk.c:583 mtk_clk_simple_probe() warn:
'base' from of_iomap() not released on lines: 496.
This problem was also found in linux-next. In mtk_clk_simple_probe(),
base is not released when handling errors
if clk_data is not existed, which may cause a leak.
So free_base should be added here to release base. |
| In the Linux kernel, the following vulnerability has been resolved:
objtool: Fix memory leak in create_static_call_sections()
strdup() allocates memory for key_name. We need to release the memory in
the following error paths. Add free() to avoid memory leak. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: pxa27x_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
kernel/fail_function: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
media: ov2740: Fix memleak in ov2740_init_controls()
There is a kmemleak when testing the media/i2c/ov2740.c with bpf mock
device:
unreferenced object 0xffff8881090e19e0 (size 16):
comm "51-i2c-ov2740", pid 278, jiffies 4294781584 (age 23.613s)
hex dump (first 16 bytes):
00 f3 7c 0b 81 88 ff ff 80 75 6a 09 81 88 ff ff ..|......uj.....
backtrace:
[<000000004e9fad8f>] __kmalloc_node+0x44/0x1b0
[<0000000039c802f4>] kvmalloc_node+0x34/0x180
[<000000009b8b5c63>] v4l2_ctrl_handler_init_class+0x11d/0x180
[videodev]
[<0000000038644056>] ov2740_probe+0x37d/0x84f [ov2740]
[<0000000092489f59>] i2c_device_probe+0x28d/0x680
[<000000001038babe>] really_probe+0x17c/0x3f0
[<0000000098c7af1c>] __driver_probe_device+0xe3/0x170
[<00000000e1b3dc24>] device_driver_attach+0x34/0x80
[<000000005a04a34d>] bind_store+0x10b/0x1a0
[<00000000ce25d4f2>] drv_attr_store+0x49/0x70
[<000000007d9f4e9a>] sysfs_kf_write+0x8c/0xb0
[<00000000be6cff0f>] kernfs_fop_write_iter+0x216/0x2e0
[<0000000031ddb40a>] vfs_write+0x658/0x810
[<0000000041beecdd>] ksys_write+0xd6/0x1b0
[<0000000023755840>] do_syscall_64+0x38/0x90
[<00000000b2cc2da2>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
ov2740_init_controls() won't clean all the allocated resources in fail
path, which may causes the memleaks. Add v4l2_ctrl_handler_free() to
prevent memleak. |