| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A double-free vulnerability was found in handling vmw_buffer_object objects in the vmwgfx driver in the Linux kernel. This issue occurs due to the lack of validating the existence of an object prior to performing further free operations on the object, which may allow a local privileged user to escalate privileges and execute code in the context of the kernel. |
| A use-after-free vulnerability was found in drivers/nvme/target/tcp.c` in `nvmet_tcp_free_crypto` due to a logical bug in the NVMe/TCP subsystem in the Linux kernel. This issue may allow a malicious user to cause a use-after-free and double-free problem, which may permit remote code execution or lead to local privilege escalation. |
| In the Linux kernel, the following vulnerability has been resolved:
lib/iov_iter: fix to increase non slab folio refcount
When testing EROFS file-backed mount over v9fs on qemu, I encountered a
folio UAF issue. The page sanity check reports the following call trace.
The root cause is that pages in bvec are coalesced across a folio bounary.
The refcount of all non-slab folios should be increased to ensure
p9_releas_pages can put them correctly.
BUG: Bad page state in process md5sum pfn:18300
page: refcount:0 mapcount:0 mapping:00000000d5ad8e4e index:0x60 pfn:0x18300
head: order:0 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0
aops:z_erofs_aops ino:30b0f dentry name(?):"GoogleExtServicesCn.apk"
flags: 0x100000000000041(locked|head|node=0|zone=1)
raw: 0100000000000041 dead000000000100 dead000000000122 ffff888014b13bd0
raw: 0000000000000060 0000000000000020 00000000ffffffff 0000000000000000
head: 0100000000000041 dead000000000100 dead000000000122 ffff888014b13bd0
head: 0000000000000060 0000000000000020 00000000ffffffff 0000000000000000
head: 0100000000000000 0000000000000000 ffffffffffffffff 0000000000000000
head: 0000000000000010 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set
Call Trace:
dump_stack_lvl+0x53/0x70
bad_page+0xd4/0x220
__free_pages_ok+0x76d/0xf30
__folio_put+0x230/0x320
p9_release_pages+0x179/0x1f0
p9_virtio_zc_request+0xa2a/0x1230
p9_client_zc_rpc.constprop.0+0x247/0x700
p9_client_read_once+0x34d/0x810
p9_client_read+0xf3/0x150
v9fs_issue_read+0x111/0x360
netfs_unbuffered_read_iter_locked+0x927/0x1390
netfs_unbuffered_read_iter+0xa2/0xe0
vfs_iocb_iter_read+0x2c7/0x460
erofs_fileio_rq_submit+0x46b/0x5b0
z_erofs_runqueue+0x1203/0x21e0
z_erofs_readahead+0x579/0x8b0
read_pages+0x19f/0xa70
page_cache_ra_order+0x4ad/0xb80
filemap_readahead.isra.0+0xe7/0x150
filemap_get_pages+0x7aa/0x1890
filemap_read+0x320/0xc80
vfs_read+0x6c6/0xa30
ksys_read+0xf9/0x1c0
do_syscall_64+0x9e/0x1a0
entry_SYSCALL_64_after_hwframe+0x71/0x79 |
| The regcomp function in the GNU C library version from 2.4 to 2.41 is
subject to a double free if some previous allocation fails. It can be
accomplished either by a malloc failure or by using an interposed malloc
that injects random malloc failures. The double free can allow buffer
manipulation depending of how the regex is constructed. This issue
affects all architectures and ABIs supported by the GNU C library. |
| The function PEM_read_bio_ex() reads a PEM file from a BIO and parses and
decodes the "name" (e.g. "CERTIFICATE"), any header data and the payload data.
If the function succeeds then the "name_out", "header" and "data" arguments are
populated with pointers to buffers containing the relevant decoded data. The
caller is responsible for freeing those buffers. It is possible to construct a
PEM file that results in 0 bytes of payload data. In this case PEM_read_bio_ex()
will return a failure code but will populate the header argument with a pointer
to a buffer that has already been freed. If the caller also frees this buffer
then a double free will occur. This will most likely lead to a crash. This
could be exploited by an attacker who has the ability to supply malicious PEM
files for parsing to achieve a denial of service attack.
The functions PEM_read_bio() and PEM_read() are simple wrappers around
PEM_read_bio_ex() and therefore these functions are also directly affected.
These functions are also called indirectly by a number of other OpenSSL
functions including PEM_X509_INFO_read_bio_ex() and
SSL_CTX_use_serverinfo_file() which are also vulnerable. Some OpenSSL internal
uses of these functions are not vulnerable because the caller does not free the
header argument if PEM_read_bio_ex() returns a failure code. These locations
include the PEM_read_bio_TYPE() functions as well as the decoders introduced in
OpenSSL 3.0.
The OpenSSL asn1parse command line application is also impacted by this issue. |
| A double-free vulnerability exists in the BrainVision ASCII Header Parsing functionality of The Biosig Project libbiosig 2.5.0 and Master Branch (ab0ee111). A specially crafted .vdhr file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability. |
| A double-free vulnerability exists in the BrainVision Header Parsing functionality of The Biosig Project libbiosig Master Branch (ab0ee111) and 2.5.0. A specially crafted .vdhr file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability. |
| An issue was discovered in SchedMD Slurm 22.05.x, 23.02.x, and 23.11.x. Because of a double free, attackers can cause a denial of service or possibly execute arbitrary code. The fixed versions are 22.05.11, 23.02.7, and 23.11.1. |
| A double-free vulnerability exists in the IP header loopback parsing functionality of Weston Embedded uC-TCP-IP v3.06.01. A specially crafted set of network packets can lead to memory corruption, potentially resulting in code execution. An attacker can send a sequence of unauthenticated packets to trigger this vulnerability. |
| In the Linux kernel, the following vulnerability has been resolved:
um: Add winch to winch_handlers before registering winch IRQ
Registering a winch IRQ is racy, an interrupt may occur before the winch is
added to the winch_handlers list.
If that happens, register_winch_irq() adds to that list a winch that is
scheduled to be (or has already been) freed, causing a panic later in
winch_cleanup().
Avoid the race by adding the winch to the winch_handlers list before
registering the IRQ, and rolling back if um_request_irq() fails. |
| In the Linux kernel, the following vulnerability has been resolved:
stm class: Fix a double free in stm_register_device()
The put_device(&stm->dev) call will trigger stm_device_release() which
frees "stm" so the vfree(stm) on the next line is a double free. |
| Vim is an open source command line text editor. Vim < v9.1.0647 has double free in src/alloc.c:616. When closing a window, the corresponding tagstack data will be cleared and freed. However a bit later, the quickfix list belonging to that window will also be cleared and if that quickfix list points to the same tagstack data, Vim will try to free it again, resulting in a double-free/use-after-free access exception. Impact is low since the user must intentionally execute vim with several non-default flags,
but it may cause a crash of Vim. The issue has been fixed as of Vim patch v9.1.0647 |
| ** REJECT ** DO NOT USE THIS CANDIDATE NUMBER. ConsultIDs: none. Reason: This candidate was withdrawn by its CNA. Further investigation showed that it was not a security issue. Notes: Additional analysis indicates that the files referenced in the stack trace do not exist in Bison. |
| In the Linux kernel, the following vulnerability has been resolved:
net: vertexcom: mse102x: Fix possible double free of TX skb
The scope of the TX skb is wider than just mse102x_tx_frame_spi(),
so in case the TX skb room needs to be expanded, we should free the
the temporary skb instead of the original skb. Otherwise the original
TX skb pointer would be freed again in mse102x_tx_work(), which leads
to crashes:
Internal error: Oops: 0000000096000004 [#2] PREEMPT SMP
CPU: 0 PID: 712 Comm: kworker/0:1 Tainted: G D 6.6.23
Hardware name: chargebyte Charge SOM DC-ONE (DT)
Workqueue: events mse102x_tx_work [mse102x]
pstate: 20400009 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : skb_release_data+0xb8/0x1d8
lr : skb_release_data+0x1ac/0x1d8
sp : ffff8000819a3cc0
x29: ffff8000819a3cc0 x28: ffff0000046daa60 x27: ffff0000057f2dc0
x26: ffff000005386c00 x25: 0000000000000002 x24: 00000000ffffffff
x23: 0000000000000000 x22: 0000000000000001 x21: ffff0000057f2e50
x20: 0000000000000006 x19: 0000000000000000 x18: ffff00003fdacfcc
x17: e69ad452d0c49def x16: 84a005feff870102 x15: 0000000000000000
x14: 000000000000024a x13: 0000000000000002 x12: 0000000000000000
x11: 0000000000000400 x10: 0000000000000930 x9 : ffff00003fd913e8
x8 : fffffc00001bc008
x7 : 0000000000000000 x6 : 0000000000000008
x5 : ffff00003fd91340 x4 : 0000000000000000 x3 : 0000000000000009
x2 : 00000000fffffffe x1 : 0000000000000000 x0 : 0000000000000000
Call trace:
skb_release_data+0xb8/0x1d8
kfree_skb_reason+0x48/0xb0
mse102x_tx_work+0x164/0x35c [mse102x]
process_one_work+0x138/0x260
worker_thread+0x32c/0x438
kthread+0x118/0x11c
ret_from_fork+0x10/0x20
Code: aa1303e0 97fffab6 72001c1f 54000141 (f9400660) |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: clear wdev->cqm_config pointer on free
When we free wdev->cqm_config when unregistering, we also
need to clear out the pointer since the same wdev/netdev
may get re-registered in another network namespace, then
destroyed later, running this code again, which results in
a double-free. |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet-auth: assign dh_key to NULL after kfree_sensitive
ctrl->dh_key might be used across multiple calls to nvmet_setup_dhgroup()
for the same controller. So it's better to nullify it after release on
error path in order to avoid double free later in nvmet_destroy_auth().
Found by Linux Verification Center (linuxtesting.org) with Svace. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: drop ppath from ext4_ext_replay_update_ex() to avoid double-free
When calling ext4_force_split_extent_at() in ext4_ext_replay_update_ex(),
the 'ppath' is updated but it is the 'path' that is freed, thus potentially
triggering a double-free in the following process:
ext4_ext_replay_update_ex
ppath = path
ext4_force_split_extent_at(&ppath)
ext4_split_extent_at
ext4_ext_insert_extent
ext4_ext_create_new_leaf
ext4_ext_grow_indepth
ext4_find_extent
if (depth > path[0].p_maxdepth)
kfree(path) ---> path First freed
*orig_path = path = NULL ---> null ppath
kfree(path) ---> path double-free !!!
So drop the unnecessary ppath and use path directly to avoid this problem.
And use ext4_find_extent() directly to update path, avoiding unnecessary
memory allocation and freeing. Also, propagate the error returned by
ext4_find_extent() instead of using strange error codes. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix double brelse() the buffer of the extents path
In ext4_ext_try_to_merge_up(), set path[1].p_bh to NULL after it has been
released, otherwise it may be released twice. An example of what triggers
this is as follows:
split2 map split1
|--------|-------|--------|
ext4_ext_map_blocks
ext4_ext_handle_unwritten_extents
ext4_split_convert_extents
// path->p_depth == 0
ext4_split_extent
// 1. do split1
ext4_split_extent_at
|ext4_ext_insert_extent
| ext4_ext_create_new_leaf
| ext4_ext_grow_indepth
| le16_add_cpu(&neh->eh_depth, 1)
| ext4_find_extent
| // return -ENOMEM
|// get error and try zeroout
|path = ext4_find_extent
| path->p_depth = 1
|ext4_ext_try_to_merge
| ext4_ext_try_to_merge_up
| path->p_depth = 0
| brelse(path[1].p_bh) ---> not set to NULL here
|// zeroout success
// 2. update path
ext4_find_extent
// 3. do split2
ext4_split_extent_at
ext4_ext_insert_extent
ext4_ext_create_new_leaf
ext4_ext_grow_indepth
le16_add_cpu(&neh->eh_depth, 1)
ext4_find_extent
path[0].p_bh = NULL;
path->p_depth = 1
read_extent_tree_block ---> return err
// path[1].p_bh is still the old value
ext4_free_ext_path
ext4_ext_drop_refs
// path->p_depth == 1
brelse(path[1].p_bh) ---> brelse a buffer twice
Finally got the following WARRNING when removing the buffer from lru:
============================================
VFS: brelse: Trying to free free buffer
WARNING: CPU: 2 PID: 72 at fs/buffer.c:1241 __brelse+0x58/0x90
CPU: 2 PID: 72 Comm: kworker/u19:1 Not tainted 6.9.0-dirty #716
RIP: 0010:__brelse+0x58/0x90
Call Trace:
<TASK>
__find_get_block+0x6e7/0x810
bdev_getblk+0x2b/0x480
__ext4_get_inode_loc+0x48a/0x1240
ext4_get_inode_loc+0xb2/0x150
ext4_reserve_inode_write+0xb7/0x230
__ext4_mark_inode_dirty+0x144/0x6a0
ext4_ext_insert_extent+0x9c8/0x3230
ext4_ext_map_blocks+0xf45/0x2dc0
ext4_map_blocks+0x724/0x1700
ext4_do_writepages+0x12d6/0x2a70
[...]
============================================ |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_scmi: Fix double free in OPTEE transport
Channels can be shared between protocols, avoid freeing the same channel
descriptors twice when unloading the stack. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: clean up our handling of refs == 0 in snapshot delete
In reada we BUG_ON(refs == 0), which could be unkind since we aren't
holding a lock on the extent leaf and thus could get a transient
incorrect answer. In walk_down_proc we also BUG_ON(refs == 0), which
could happen if we have extent tree corruption. Change that to return
-EUCLEAN. In do_walk_down() we catch this case and handle it correctly,
however we return -EIO, which -EUCLEAN is a more appropriate error code.
Finally in walk_up_proc we have the same BUG_ON(refs == 0), so convert
that to proper error handling. Also adjust the error message so we can
actually do something with the information. |