| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix kernel bug on rename operation of broken directory
Syzbot reported that in rename directory operation on broken directory on
nilfs2, __block_write_begin_int() called to prepare block write may fail
BUG_ON check for access exceeding the folio/page size.
This is because nilfs_dotdot(), which gets parent directory reference
entry ("..") of the directory to be moved or renamed, does not check
consistency enough, and may return location exceeding folio/page size for
broken directories.
Fix this issue by checking required directory entries ("." and "..") in
the first chunk of the directory in nilfs_dotdot(). |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: discard write access to the directory open
may_open() does not allow a directory to be opened with the write access.
However, some writing flags set by client result in adding write access
on server, making ksmbd incompatible with FUSE file system. Simply, let's
discard the write access when opening a directory.
list_add corruption. next is NULL.
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:26!
pc : __list_add_valid+0x88/0xbc
lr : __list_add_valid+0x88/0xbc
Call trace:
__list_add_valid+0x88/0xbc
fuse_finish_open+0x11c/0x170
fuse_open_common+0x284/0x5e8
fuse_dir_open+0x14/0x24
do_dentry_open+0x2a4/0x4e0
dentry_open+0x50/0x80
smb2_open+0xbe4/0x15a4
handle_ksmbd_work+0x478/0x5ec
process_one_work+0x1b4/0x448
worker_thread+0x25c/0x430
kthread+0x104/0x1d4
ret_from_fork+0x10/0x20 |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: avoid too many retransmit packets
If a TCP socket is using TCP_USER_TIMEOUT, and the other peer
retracted its window to zero, tcp_retransmit_timer() can
retransmit a packet every two jiffies (2 ms for HZ=1000),
for about 4 minutes after TCP_USER_TIMEOUT has 'expired'.
The fix is to make sure tcp_rtx_probe0_timed_out() takes
icsk->icsk_user_timeout into account.
Before blamed commit, the socket would not timeout after
icsk->icsk_user_timeout, but would use standard exponential
backoff for the retransmits.
Also worth noting that before commit e89688e3e978 ("net: tcp:
fix unexcepted socket die when snd_wnd is 0"), the issue
would last 2 minutes instead of 4. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: ipset: Fix suspicious rcu_dereference_protected()
When destroying all sets, we are either in pernet exit phase or
are executing a "destroy all sets command" from userspace. The latter
was taken into account in ip_set_dereference() (nfnetlink mutex is held),
but the former was not. The patch adds the required check to
rcu_dereference_protected() in ip_set_dereference(). |
| In the Linux kernel, the following vulnerability has been resolved:
MIPS: Octeon: Add PCIe link status check
The standard PCIe configuration read-write interface is used to
access the configuration space of the peripheral PCIe devices
of the mips processor after the PCIe link surprise down, it can
generate kernel panic caused by "Data bus error". So it is
necessary to add PCIe link status check for system protection.
When the PCIe link is down or in training, assigning a value
of 0 to the configuration address can prevent read-write behavior
to the configuration space of peripheral PCIe devices, thereby
preventing kernel panic. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: add the option to have a tty reject a new ldisc
... and use it to limit the virtual terminals to just N_TTY. They are
kind of special, and in particular, the "con_write()" routine violates
the "writes cannot sleep" rule that some ldiscs rely on.
This avoids the
BUG: sleeping function called from invalid context at kernel/printk/printk.c:2659
when N_GSM has been attached to a virtual console, and gsmld_write()
calls con_write() while holding a spinlock, and con_write() then tries
to get the console lock. |
| In the Linux kernel, the following vulnerability has been resolved:
mips: bmips: BCM6358: make sure CBR is correctly set
It was discovered that some device have CBR address set to 0 causing
kernel panic when arch_sync_dma_for_cpu_all is called.
This was notice in situation where the system is booted from TP1 and
BMIPS_GET_CBR() returns 0 instead of a valid address and
!!(read_c0_brcm_cmt_local() & (1 << 31)); not failing.
The current check whether RAC flush should be disabled or not are not
enough hence lets check if CBR is a valid address or not. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/page_table_check: fix crash on ZONE_DEVICE
Not all pages may apply to pgtable check. One example is ZONE_DEVICE
pages: they map PFNs directly, and they don't allocate page_ext at all
even if there's struct page around. One may reference
devm_memremap_pages().
When both ZONE_DEVICE and page-table-check enabled, then try to map some
dax memories, one can trigger kernel bug constantly now when the kernel
was trying to inject some pfn maps on the dax device:
kernel BUG at mm/page_table_check.c:55!
While it's pretty legal to use set_pxx_at() for ZONE_DEVICE pages for page
fault resolutions, skip all the checks if page_ext doesn't even exist in
pgtable checker, which applies to ZONE_DEVICE but maybe more. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Fix tainted pointer delete is case of flow rules creation fail
In case of flow rule creation fail in mlx5_lag_create_port_sel_table(),
instead of previously created rules, the tainted pointer is deleted
deveral times.
Fix this bug by using correct flow rules pointers.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
net: wwan: iosm: Fix tainted pointer delete is case of region creation fail
In case of region creation fail in ipc_devlink_create_region(), previously
created regions delete process starts from tainted pointer which actually
holds error code value.
Fix this bug by decreasing region index before delete.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
landlock: Fix d_parent walk
The WARN_ON_ONCE() in collect_domain_accesses() can be triggered when
trying to link a root mount point. This cannot work in practice because
this directory is mounted, but the VFS check is done after the call to
security_path_link().
Do not use source directory's d_parent when the source directory is the
mount point.
[mic: Fix commit message] |
| In the Linux kernel, the following vulnerability has been resolved:
cachefiles: flush all requests after setting CACHEFILES_DEAD
In ondemand mode, when the daemon is processing an open request, if the
kernel flags the cache as CACHEFILES_DEAD, the cachefiles_daemon_write()
will always return -EIO, so the daemon can't pass the copen to the kernel.
Then the kernel process that is waiting for the copen triggers a hung_task.
Since the DEAD state is irreversible, it can only be exited by closing
/dev/cachefiles. Therefore, after calling cachefiles_io_error() to mark
the cache as CACHEFILES_DEAD, if in ondemand mode, flush all requests to
avoid the above hungtask. We may still be able to read some of the cached
data before closing the fd of /dev/cachefiles.
Note that this relies on the patch that adds reference counting to the req,
otherwise it may UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/dpt: Make DPT object unshrinkable
In some scenarios, the DPT object gets shrunk but
the actual framebuffer did not and thus its still
there on the DPT's vm->bound_list. Then it tries to
rewrite the PTEs via a stale CPU mapping. This causes panic.
[vsyrjala: Add TODO comment]
(cherry picked from commit 51064d471c53dcc8eddd2333c3f1c1d9131ba36c) |
| In the Linux kernel, the following vulnerability has been resolved:
net: bridge: mst: pass vlan group directly to br_mst_vlan_set_state
Pass the already obtained vlan group pointer to br_mst_vlan_set_state()
instead of dereferencing it again. Each caller has already correctly
dereferenced it for their context. This change is required for the
following suspicious RCU dereference fix. No functional changes
intended. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix potential kernel bug due to lack of writeback flag waiting
Destructive writes to a block device on which nilfs2 is mounted can cause
a kernel bug in the folio/page writeback start routine or writeback end
routine (__folio_start_writeback in the log below):
kernel BUG at mm/page-writeback.c:3070!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
...
RIP: 0010:__folio_start_writeback+0xbaa/0x10e0
Code: 25 ff 0f 00 00 0f 84 18 01 00 00 e8 40 ca c6 ff e9 17 f6 ff ff
e8 36 ca c6 ff 4c 89 f7 48 c7 c6 80 c0 12 84 e8 e7 b3 0f 00 90 <0f>
0b e8 1f ca c6 ff 4c 89 f7 48 c7 c6 a0 c6 12 84 e8 d0 b3 0f 00
...
Call Trace:
<TASK>
nilfs_segctor_do_construct+0x4654/0x69d0 [nilfs2]
nilfs_segctor_construct+0x181/0x6b0 [nilfs2]
nilfs_segctor_thread+0x548/0x11c0 [nilfs2]
kthread+0x2f0/0x390
ret_from_fork+0x4b/0x80
ret_from_fork_asm+0x1a/0x30
</TASK>
This is because when the log writer starts a writeback for segment summary
blocks or a super root block that use the backing device's page cache, it
does not wait for the ongoing folio/page writeback, resulting in an
inconsistent writeback state.
Fix this issue by waiting for ongoing writebacks when putting
folios/pages on the backing device into writeback state. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix the warning "__rxe_cleanup+0x12c/0x170 [rdma_rxe]"
The Call Trace is as below:
"
<TASK>
? show_regs.cold+0x1a/0x1f
? __rxe_cleanup+0x12c/0x170 [rdma_rxe]
? __warn+0x84/0xd0
? __rxe_cleanup+0x12c/0x170 [rdma_rxe]
? report_bug+0x105/0x180
? handle_bug+0x46/0x80
? exc_invalid_op+0x19/0x70
? asm_exc_invalid_op+0x1b/0x20
? __rxe_cleanup+0x12c/0x170 [rdma_rxe]
? __rxe_cleanup+0x124/0x170 [rdma_rxe]
rxe_destroy_qp.cold+0x24/0x29 [rdma_rxe]
ib_destroy_qp_user+0x118/0x190 [ib_core]
rdma_destroy_qp.cold+0x43/0x5e [rdma_cm]
rtrs_cq_qp_destroy.cold+0x1d/0x2b [rtrs_core]
rtrs_srv_close_work.cold+0x1b/0x31 [rtrs_server]
process_one_work+0x21d/0x3f0
worker_thread+0x4a/0x3c0
? process_one_work+0x3f0/0x3f0
kthread+0xf0/0x120
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x22/0x30
</TASK>
"
When too many rdma resources are allocated, rxe needs more time to
handle these rdma resources. Sometimes with the current timeout, rxe
can not release the rdma resources correctly.
Compared with other rdma drivers, a bigger timeout is used. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: fix hang in nfsd4_shutdown_callback
If nfs4_client is in courtesy state then there is no point to send
the callback. This causes nfsd4_shutdown_callback to hang since
cl_cb_inflight is not 0. This hang lasts about 15 minutes until TCP
notifies NFSD that the connection was dropped.
This patch modifies nfsd4_run_cb_work to skip the RPC call if
nfs4_client is in courtesy state. |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: sysctl: rto_min/max: avoid using current->nsproxy
As mentioned in a previous commit of this series, using the 'net'
structure via 'current' is not recommended for different reasons:
- Inconsistency: getting info from the reader's/writer's netns vs only
from the opener's netns.
- current->nsproxy can be NULL in some cases, resulting in an 'Oops'
(null-ptr-deref), e.g. when the current task is exiting, as spotted by
syzbot [1] using acct(2).
The 'net' structure can be obtained from the table->data using
container_of().
Note that table->data could also be used directly, as this is the only
member needed from the 'net' structure, but that would increase the size
of this fix, to use '*data' everywhere 'net->sctp.rto_min/max' is used. |
| In the Linux kernel, the following vulnerability has been resolved:
af_packet: fix vlan_get_tci() vs MSG_PEEK
Blamed commit forgot MSG_PEEK case, allowing a crash [1] as found
by syzbot.
Rework vlan_get_tci() to not touch skb at all,
so that it can be used from many cpus on the same skb.
Add a const qualifier to skb argument.
[1]
skbuff: skb_under_panic: text:ffffffff8a8da482 len:32 put:14 head:ffff88807a1d5800 data:ffff88807a1d5810 tail:0x14 end:0x140 dev:<NULL>
------------[ cut here ]------------
kernel BUG at net/core/skbuff.c:206 !
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 0 UID: 0 PID: 5880 Comm: syz-executor172 Not tainted 6.13.0-rc3-syzkaller-00762-g9268abe611b0 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
RIP: 0010:skb_panic net/core/skbuff.c:206 [inline]
RIP: 0010:skb_under_panic+0x14b/0x150 net/core/skbuff.c:216
Code: 0b 8d 48 c7 c6 9e 6c 26 8e 48 8b 54 24 08 8b 0c 24 44 8b 44 24 04 4d 89 e9 50 41 54 41 57 41 56 e8 3a 5a 79 f7 48 83 c4 20 90 <0f> 0b 0f 1f 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3
RSP: 0018:ffffc90003baf5b8 EFLAGS: 00010286
RAX: 0000000000000087 RBX: dffffc0000000000 RCX: 8565c1eec37aa000
RDX: 0000000000000000 RSI: 0000000080000000 RDI: 0000000000000000
RBP: ffff88802616fb50 R08: ffffffff817f0a4c R09: 1ffff92000775e50
R10: dffffc0000000000 R11: fffff52000775e51 R12: 0000000000000140
R13: ffff88807a1d5800 R14: ffff88807a1d5810 R15: 0000000000000014
FS: 00007fa03261f6c0(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007ffd65753000 CR3: 0000000031720000 CR4: 00000000003526f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
skb_push+0xe5/0x100 net/core/skbuff.c:2636
vlan_get_tci+0x272/0x550 net/packet/af_packet.c:565
packet_recvmsg+0x13c9/0x1ef0 net/packet/af_packet.c:3616
sock_recvmsg_nosec net/socket.c:1044 [inline]
sock_recvmsg+0x22f/0x280 net/socket.c:1066
____sys_recvmsg+0x1c6/0x480 net/socket.c:2814
___sys_recvmsg net/socket.c:2856 [inline]
do_recvmmsg+0x426/0xab0 net/socket.c:2951
__sys_recvmmsg net/socket.c:3025 [inline]
__do_sys_recvmmsg net/socket.c:3048 [inline]
__se_sys_recvmmsg net/socket.c:3041 [inline]
__x64_sys_recvmmsg+0x199/0x250 net/socket.c:3041
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 |
| In the Linux kernel, the following vulnerability has been resolved:
af_packet: fix vlan_get_protocol_dgram() vs MSG_PEEK
Blamed commit forgot MSG_PEEK case, allowing a crash [1] as found
by syzbot.
Rework vlan_get_protocol_dgram() to not touch skb at all,
so that it can be used from many cpus on the same skb.
Add a const qualifier to skb argument.
[1]
skbuff: skb_under_panic: text:ffffffff8a8ccd05 len:29 put:14 head:ffff88807fc8e400 data:ffff88807fc8e3f4 tail:0x11 end:0x140 dev:<NULL>
------------[ cut here ]------------
kernel BUG at net/core/skbuff.c:206 !
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 1 UID: 0 PID: 5892 Comm: syz-executor883 Not tainted 6.13.0-rc4-syzkaller-00054-gd6ef8b40d075 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
RIP: 0010:skb_panic net/core/skbuff.c:206 [inline]
RIP: 0010:skb_under_panic+0x14b/0x150 net/core/skbuff.c:216
Code: 0b 8d 48 c7 c6 86 d5 25 8e 48 8b 54 24 08 8b 0c 24 44 8b 44 24 04 4d 89 e9 50 41 54 41 57 41 56 e8 5a 69 79 f7 48 83 c4 20 90 <0f> 0b 0f 1f 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3
RSP: 0018:ffffc900038d7638 EFLAGS: 00010282
RAX: 0000000000000087 RBX: dffffc0000000000 RCX: 609ffd18ea660600
RDX: 0000000000000000 RSI: 0000000080000000 RDI: 0000000000000000
RBP: ffff88802483c8d0 R08: ffffffff817f0a8c R09: 1ffff9200071ae60
R10: dffffc0000000000 R11: fffff5200071ae61 R12: 0000000000000140
R13: ffff88807fc8e400 R14: ffff88807fc8e3f4 R15: 0000000000000011
FS: 00007fbac5e006c0(0000) GS:ffff8880b8700000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fbac5e00d58 CR3: 000000001238e000 CR4: 00000000003526f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
skb_push+0xe5/0x100 net/core/skbuff.c:2636
vlan_get_protocol_dgram+0x165/0x290 net/packet/af_packet.c:585
packet_recvmsg+0x948/0x1ef0 net/packet/af_packet.c:3552
sock_recvmsg_nosec net/socket.c:1033 [inline]
sock_recvmsg+0x22f/0x280 net/socket.c:1055
____sys_recvmsg+0x1c6/0x480 net/socket.c:2803
___sys_recvmsg net/socket.c:2845 [inline]
do_recvmmsg+0x426/0xab0 net/socket.c:2940
__sys_recvmmsg net/socket.c:3014 [inline]
__do_sys_recvmmsg net/socket.c:3037 [inline]
__se_sys_recvmmsg net/socket.c:3030 [inline]
__x64_sys_recvmmsg+0x199/0x250 net/socket.c:3030
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f |