CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
net: tun: Update napi->skb after XDP process
The syzbot report a UAF issue:
BUG: KASAN: slab-use-after-free in skb_reset_mac_header include/linux/skbuff.h:3150 [inline]
BUG: KASAN: slab-use-after-free in napi_frags_skb net/core/gro.c:723 [inline]
BUG: KASAN: slab-use-after-free in napi_gro_frags+0x6e/0x1030 net/core/gro.c:758
Read of size 8 at addr ffff88802ef22c18 by task syz.0.17/6079
CPU: 0 UID: 0 PID: 6079 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full)
Call Trace:
<TASK>
dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xca/0x240 mm/kasan/report.c:482
kasan_report+0x118/0x150 mm/kasan/report.c:595
skb_reset_mac_header include/linux/skbuff.h:3150 [inline]
napi_frags_skb net/core/gro.c:723 [inline]
napi_gro_frags+0x6e/0x1030 net/core/gro.c:758
tun_get_user+0x28cb/0x3e20 drivers/net/tun.c:1920
tun_chr_write_iter+0x113/0x200 drivers/net/tun.c:1996
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x5c9/0xb30 fs/read_write.c:686
ksys_write+0x145/0x250 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
Allocated by task 6079:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
unpoison_slab_object mm/kasan/common.c:330 [inline]
__kasan_mempool_unpoison_object+0xa0/0x170 mm/kasan/common.c:558
kasan_mempool_unpoison_object include/linux/kasan.h:388 [inline]
napi_skb_cache_get+0x37b/0x6d0 net/core/skbuff.c:295
__alloc_skb+0x11e/0x2d0 net/core/skbuff.c:657
napi_alloc_skb+0x84/0x7d0 net/core/skbuff.c:811
napi_get_frags+0x69/0x140 net/core/gro.c:673
tun_napi_alloc_frags drivers/net/tun.c:1404 [inline]
tun_get_user+0x77c/0x3e20 drivers/net/tun.c:1784
tun_chr_write_iter+0x113/0x200 drivers/net/tun.c:1996
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x5c9/0xb30 fs/read_write.c:686
ksys_write+0x145/0x250 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 6079:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576
poison_slab_object mm/kasan/common.c:243 [inline]
__kasan_slab_free+0x5b/0x80 mm/kasan/common.c:275
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2422 [inline]
slab_free mm/slub.c:4695 [inline]
kmem_cache_free+0x18f/0x400 mm/slub.c:4797
skb_pp_cow_data+0xdd8/0x13e0 net/core/skbuff.c:969
netif_skb_check_for_xdp net/core/dev.c:5390 [inline]
netif_receive_generic_xdp net/core/dev.c:5431 [inline]
do_xdp_generic+0x699/0x11a0 net/core/dev.c:5499
tun_get_user+0x2523/0x3e20 drivers/net/tun.c:1872
tun_chr_write_iter+0x113/0x200 drivers/net/tun.c:1996
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x5c9/0xb30 fs/read_write.c:686
ksys_write+0x145/0x250 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
After commit e6d5dbdd20aa ("xdp: add multi-buff support for xdp running in
generic mode"), the original skb may be freed in skb_pp_cow_data() when
XDP program was attached, which was allocated in tun_napi_alloc_frags().
However, the napi->skb still point to the original skb, update it after
XDP process. |
In the Linux kernel, the following vulnerability has been resolved:
octeontx2-pf: Fix potential use after free in otx2_tc_add_flow()
This code calls kfree_rcu(new_node, rcu) and then dereferences "new_node"
and then dereferences it on the next line. Two lines later, we take
a mutex so I don't think this is an RCU safe region. Re-order it to do
the dereferences before queuing up the free. |
The BlindMatrix e-Commerce WordPress plugin before 3.1 does not validate some shortcode attributes before using them to generate paths passed to include function/s, allowing any authenticated users, such as contributors, to perform LFI attacks. |
In the Linux kernel, the following vulnerability has been resolved:
fbcon: fix integer overflow in fbcon_do_set_font
Fix integer overflow vulnerabilities in fbcon_do_set_font() where font
size calculations could overflow when handling user-controlled font
parameters.
The vulnerabilities occur when:
1. CALC_FONTSZ(h, pitch, charcount) performs h * pith * charcount
multiplication with user-controlled values that can overflow.
2. FONT_EXTRA_WORDS * sizeof(int) + size addition can also overflow
3. This results in smaller allocations than expected, leading to buffer
overflows during font data copying.
Add explicit overflow checking using check_mul_overflow() and
check_add_overflow() kernel helpers to safety validate all size
calculations before allocation. |
In the Linux kernel, the following vulnerability has been resolved:
i40e: fix validation of VF state in get resources
VF state I40E_VF_STATE_ACTIVE is not the only state in which
VF is actually active so it should not be used to determine
if a VF is allowed to obtain resources.
Use I40E_VF_STATE_RESOURCES_LOADED that is set only in
i40e_vc_get_vf_resources_msg() and cleared during reset. |
In the Linux kernel, the following vulnerability has been resolved:
tracing/osnoise: Fix slab-out-of-bounds in _parse_integer_limit()
When config osnoise cpus by write() syscall, the following KASAN splat may
be observed:
BUG: KASAN: slab-out-of-bounds in _parse_integer_limit+0x103/0x130
Read of size 1 at addr ffff88810121e3a1 by task test/447
CPU: 1 UID: 0 PID: 447 Comm: test Not tainted 6.17.0-rc6-dirty #288 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x55/0x70
print_report+0xcb/0x610
kasan_report+0xb8/0xf0
_parse_integer_limit+0x103/0x130
bitmap_parselist+0x16d/0x6f0
osnoise_cpus_write+0x116/0x2d0
vfs_write+0x21e/0xcc0
ksys_write+0xee/0x1c0
do_syscall_64+0xa8/0x2a0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
This issue can be reproduced by below code:
const char *cpulist = "1";
int fd=open("/sys/kernel/debug/tracing/osnoise/cpus", O_WRONLY);
write(fd, cpulist, strlen(cpulist));
Function bitmap_parselist() was called to parse cpulist, it require that
the parameter 'buf' must be terminated with a '\0' or '\n'. Fix this issue
by adding a '\0' to 'buf' in osnoise_cpus_write(). |
In the Linux kernel, the following vulnerability has been resolved:
nexthop: Forbid FDB status change while nexthop is in a group
The kernel forbids the creation of non-FDB nexthop groups with FDB
nexthops:
# ip nexthop add id 1 via 192.0.2.1 fdb
# ip nexthop add id 2 group 1
Error: Non FDB nexthop group cannot have fdb nexthops.
And vice versa:
# ip nexthop add id 3 via 192.0.2.2 dev dummy1
# ip nexthop add id 4 group 3 fdb
Error: FDB nexthop group can only have fdb nexthops.
However, as long as no routes are pointing to a non-FDB nexthop group,
the kernel allows changing the type of a nexthop from FDB to non-FDB and
vice versa:
# ip nexthop add id 5 via 192.0.2.2 dev dummy1
# ip nexthop add id 6 group 5
# ip nexthop replace id 5 via 192.0.2.2 fdb
# echo $?
0
This configuration is invalid and can result in a NPD [1] since FDB
nexthops are not associated with a nexthop device:
# ip route add 198.51.100.1/32 nhid 6
# ping 198.51.100.1
Fix by preventing nexthop FDB status change while the nexthop is in a
group:
# ip nexthop add id 7 via 192.0.2.2 dev dummy1
# ip nexthop add id 8 group 7
# ip nexthop replace id 7 via 192.0.2.2 fdb
Error: Cannot change nexthop FDB status while in a group.
[1]
BUG: kernel NULL pointer dereference, address: 00000000000003c0
[...]
Oops: Oops: 0000 [#1] SMP
CPU: 6 UID: 0 PID: 367 Comm: ping Not tainted 6.17.0-rc6-virtme-gb65678cacc03 #1 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-4.fc41 04/01/2014
RIP: 0010:fib_lookup_good_nhc+0x1e/0x80
[...]
Call Trace:
<TASK>
fib_table_lookup+0x541/0x650
ip_route_output_key_hash_rcu+0x2ea/0x970
ip_route_output_key_hash+0x55/0x80
__ip4_datagram_connect+0x250/0x330
udp_connect+0x2b/0x60
__sys_connect+0x9c/0xd0
__x64_sys_connect+0x18/0x20
do_syscall_64+0xa4/0x2a0
entry_SYSCALL_64_after_hwframe+0x4b/0x53 |
In the Linux kernel, the following vulnerability has been resolved:
can: mcba_usb: populate ndo_change_mtu() to prevent buffer overflow
Sending an PF_PACKET allows to bypass the CAN framework logic and to
directly reach the xmit() function of a CAN driver. The only check
which is performed by the PF_PACKET framework is to make sure that
skb->len fits the interface's MTU.
Unfortunately, because the mcba_usb driver does not populate its
net_device_ops->ndo_change_mtu(), it is possible for an attacker to
configure an invalid MTU by doing, for example:
$ ip link set can0 mtu 9999
After doing so, the attacker could open a PF_PACKET socket using the
ETH_P_CANXL protocol:
socket(PF_PACKET, SOCK_RAW, htons(ETH_P_CANXL))
to inject a malicious CAN XL frames. For example:
struct canxl_frame frame = {
.flags = 0xff,
.len = 2048,
};
The CAN drivers' xmit() function are calling can_dev_dropped_skb() to
check that the skb is valid, unfortunately under above conditions, the
malicious packet is able to go through can_dev_dropped_skb() checks:
1. the skb->protocol is set to ETH_P_CANXL which is valid (the
function does not check the actual device capabilities).
2. the length is a valid CAN XL length.
And so, mcba_usb_start_xmit() receives a CAN XL frame which it is not
able to correctly handle and will thus misinterpret it as a CAN frame.
This can result in a buffer overflow. The driver will consume cf->len
as-is with no further checks on these lines:
usb_msg.dlc = cf->len;
memcpy(usb_msg.data, cf->data, usb_msg.dlc);
Here, cf->len corresponds to the flags field of the CAN XL frame. In
our previous example, we set canxl_frame->flags to 0xff. Because the
maximum expected length is 8, a buffer overflow of 247 bytes occurs!
Populate net_device_ops->ndo_change_mtu() to ensure that the
interface's MTU can not be set to anything bigger than CAN_MTU. By
fixing the root cause, this prevents the buffer overflow. |
In the Linux kernel, the following vulnerability has been resolved:
can: sun4i_can: populate ndo_change_mtu() to prevent buffer overflow
Sending an PF_PACKET allows to bypass the CAN framework logic and to
directly reach the xmit() function of a CAN driver. The only check
which is performed by the PF_PACKET framework is to make sure that
skb->len fits the interface's MTU.
Unfortunately, because the sun4i_can driver does not populate its
net_device_ops->ndo_change_mtu(), it is possible for an attacker to
configure an invalid MTU by doing, for example:
$ ip link set can0 mtu 9999
After doing so, the attacker could open a PF_PACKET socket using the
ETH_P_CANXL protocol:
socket(PF_PACKET, SOCK_RAW, htons(ETH_P_CANXL))
to inject a malicious CAN XL frames. For example:
struct canxl_frame frame = {
.flags = 0xff,
.len = 2048,
};
The CAN drivers' xmit() function are calling can_dev_dropped_skb() to
check that the skb is valid, unfortunately under above conditions, the
malicious packet is able to go through can_dev_dropped_skb() checks:
1. the skb->protocol is set to ETH_P_CANXL which is valid (the
function does not check the actual device capabilities).
2. the length is a valid CAN XL length.
And so, sun4ican_start_xmit() receives a CAN XL frame which it is not
able to correctly handle and will thus misinterpret it as a CAN frame.
This can result in a buffer overflow. The driver will consume cf->len
as-is with no further checks on this line:
dlc = cf->len;
Here, cf->len corresponds to the flags field of the CAN XL frame. In
our previous example, we set canxl_frame->flags to 0xff. Because the
maximum expected length is 8, a buffer overflow of 247 bytes occurs a
couple line below when doing:
for (i = 0; i < dlc; i++)
writel(cf->data[i], priv->base + (dreg + i * 4));
Populate net_device_ops->ndo_change_mtu() to ensure that the
interface's MTU can not be set to anything bigger than CAN_MTU. By
fixing the root cause, this prevents the buffer overflow. |
In the Linux kernel, the following vulnerability has been resolved:
can: hi311x: populate ndo_change_mtu() to prevent buffer overflow
Sending an PF_PACKET allows to bypass the CAN framework logic and to
directly reach the xmit() function of a CAN driver. The only check
which is performed by the PF_PACKET framework is to make sure that
skb->len fits the interface's MTU.
Unfortunately, because the sun4i_can driver does not populate its
net_device_ops->ndo_change_mtu(), it is possible for an attacker to
configure an invalid MTU by doing, for example:
$ ip link set can0 mtu 9999
After doing so, the attacker could open a PF_PACKET socket using the
ETH_P_CANXL protocol:
socket(PF_PACKET, SOCK_RAW, htons(ETH_P_CANXL))
to inject a malicious CAN XL frames. For example:
struct canxl_frame frame = {
.flags = 0xff,
.len = 2048,
};
The CAN drivers' xmit() function are calling can_dev_dropped_skb() to
check that the skb is valid, unfortunately under above conditions, the
malicious packet is able to go through can_dev_dropped_skb() checks:
1. the skb->protocol is set to ETH_P_CANXL which is valid (the
function does not check the actual device capabilities).
2. the length is a valid CAN XL length.
And so, hi3110_hard_start_xmit() receives a CAN XL frame which it is
not able to correctly handle and will thus misinterpret it as a CAN
frame. The driver will consume frame->len as-is with no further
checks.
This can result in a buffer overflow later on in hi3110_hw_tx() on
this line:
memcpy(buf + HI3110_FIFO_EXT_DATA_OFF,
frame->data, frame->len);
Here, frame->len corresponds to the flags field of the CAN XL frame.
In our previous example, we set canxl_frame->flags to 0xff. Because
the maximum expected length is 8, a buffer overflow of 247 bytes
occurs!
Populate net_device_ops->ndo_change_mtu() to ensure that the
interface's MTU can not be set to anything bigger than CAN_MTU. By
fixing the root cause, this prevents the buffer overflow. |
The WordPress plugin is-human <= v1.4.2 contains an eval injection vulnerability in /is-human/engine.php that can be triggered via the 'type' parameter when the 'action' parameter is set to 'log-reset'. The root cause is unsafe use of eval() on user-controlled input, which can lead to execution of attacker-supplied PHP and OS commands. This may result in arbitrary code execution as the webserver user, site compromise, or data exfiltration. The is-human plugin was made defunct in June 2008 and is no longer available for download. This vulnerability was exploited in the wild in March 2012. |
DBLTek GoIP devices (models GoIP 1, 4, 8, 16, and 32) contain an undocumented vendor backdoor in the Telnet administrative interface that allows remote authentication as an undocumented user via a proprietary challenge–response scheme which is fundamentally flawed. Because the challenge response can be computed from the challenge itself, a remote attacker can authenticate without knowledge of a secret and obtain a root shell on the device. This can lead to persistent remote code execution, full device compromise, and arbitrary control of the device and any managed services. The firmware used within these devices was updated in December 2016 to make this vulnerability more complex to exploit. However, it is unknown if DBLTek has taken steps to fully mitigate. |
Valve's Source SDK (source-sdk-2013)'s ragdoll model parsing logic contains a stack-based buffer overflow vulnerability.The tokenizer function `nexttoken` copies characters from an input string into a fixed-size stack buffer without performing bounds checks. When `ParseKeyValue` processes a collisionpair rule longer than the destination buffer (256 bytes), an overflow of the stack buffer `szToken` can occur and overwrite the function return address. A remote attacker can trigger the vulnerable code by supplying a specially crafted ragdoll model which causes the oversized collisionpair rule to be parsed, resulting in remote code execution on affected clients or servers. Valve has addressed this issue in many of their Source games, but independently-developed games must manually apply patch. |
VestaCP commit a3f0fa1 (2018-05-31) up to commit ee03eff (2018-06-13) contain embedded malicious code that resulted in a supply-chain compromise. New installations created from the compromised installer since at least May 2018 were subject to installation of Linux/ChachaDDoS, a multi-stage DDoS bot that uses Lua for second- and third-stage components. The compromise leaked administrative credentials (base64-encoded admin password and server domain) to an external URL during installation and/or resulted in the installer dropping and executing a DDoS malware payload under local system privileges. Compromised servers were subsequently observed participating in large-scale DDoS activity. Vesta acknowledged exploitation in the wild in October 2018. |
Ruijie RG-UAC Application Management Gateway contains a command injection vulnerability via the 'nmc_sync.php' interface. An unauthenticated attacker able to reach the affected endpoint can inject shell commands via crafted request data, causing the application to execute arbitrary commands on the host. Successful exploitation can yield full control of the application process and may lead to system-level access depending on the service privileges. VulnCheck has observed this vulnerability being targeted by the RondoDox botnet campaign. |
SmartBI V8, V9, and V10 contain an unrestricted file upload vulnerability via the RMIServlet request handling logic. Under certain configurations or usage patterns, attackers can send specially crafted requests that cause the application to perform sensitive operations or execute arbitrary code on the host. The vendor released a fix in July 2023 to address the underlying flaw. VulnCheck has observed this vulnerability being targeted by the RondoDox botnet campaign. |
BYTEVALUE Intelligent Flow Control Router contains a command injection vulnerability via the /goform/webRead/open endpoint. The `path` parameter is not properly validated and is echoed into a shell context, allowing an attacker to inject and execute arbitrary shell commands on the device. Successful exploitation can lead to writing backdoors, privilege escalation on the host, and full compromise of the router and its management functions. VulnCheck has observed this vulnerability being targeted by the RondoDox botnet campaign. |
Huijietong Cloud Video Platform contains a path traversal vulnerability that allows an unauthenticated attacker can supply arbitrary file paths to the `fullPath` parameter of the `/fileDownload?action=downloadBackupFile` endpoint and retrieve files from the server filesystem. VulnCheck has observed this vulnerability being targeted by the RondoDox botnet campaign. |
The WPBakery Page Builder plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the Custom JS module in all versions up to, and including, 8.6.1. This is due to insufficient input sanitization and output escaping of user-supplied JavaScript code in the Custom JS module. This makes it possible for authenticated attackers with contributor-level access or higher to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page via the WPBakery Page Builder Custom JS module granted they have access to the WPBakery editor for post types. |
The WPBakery Page Builder plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the vc_custom_heading shortcode in all versions up to, and including, 8.6.1. This is due to insufficient restriction of allowed HTML tags and improper sanitization of user-supplied attributes in the font_container parameter. This makes it possible for authenticated attackers with contributor-level access or higher to inject arbitrary web scripts in posts that will execute whenever a user accesses an injected page via the vc_custom_heading shortcode with malicious tag and text attributes granted they have access to use WPBakery shortcodes. |